新疆天山北坡山区流域水文气象资料稀缺,融雪径流模拟比较困难。为研究HBV模型在新疆天山北坡玛纳斯河流域径流模拟的适用性,通过分析流域积雪覆盖率与径流的相关性,并基于中国地面降水与气温日值0.5°×0.5°格点数据集,经空间插值得到研究区多年平均降水和气温的空间分布,运用HBV模型模拟了玛纳斯河流域2000—2013年日尺度和月尺度径流过程,与SRM的模拟效果进行对比分析。结果表明:①多年月平均积雪覆盖率与多年月平均流量呈负相关,相关系数R2=0.67,流域内积雪融水对径流的补给作用明显;②数据集经空间插值得到研究区多年平均降水和气温的空间分布能基本反映流域的垂直气候差异性,数据集可作为玛纳斯河流域缺乏气象资料的高山区径流模拟的输入数据;③HBV模型与SRM在玛纳斯河流域日尺度和月尺度的径流模拟效果评价等级均为良好,且HBV模型对洪峰流量模拟效果更好,整体的模拟值与实测值偏差更小,HBV模型在玛纳斯河流域具有较好的适用性。
Abstract
Due to limited hydro-meteorological data available, it is challenging to simulate the snowmelt runoff in mountainous watersheds on the northern slopes of the Tianshan Mountains in Xinjiang. To investigate the suitability of the Hydrologiska Byrans Vattenbalansavdelning(HBV) model for simulating runoff in the Manas River basin, which is located on the northern slopes of the Tianshan Mountains in Xinjiang, we examined the relationship between snow cover and runoff in the basin. By conducting spatial interpolation based on a 0.5°×0.5° grid point dataset of daily surface precipitation and air temperature in China, we obtained the spatial distribution of multi-year average precipitation and air temperature in the study area. Subsequently we employed the HBV model to simulate the daily and monthly runoff processes in the Manas River basin from 2000 to 2013. To assess the model’s performance, we compared the HBV simulation results with those of Snowmelt Runoff Model(SRM). The findings reveal the following: 1) The multi-year monthly mean snow cover exhibits a negative correlation (R2=0.67) with the multi-year monthly mean flow, indicating a significant contribution of snowmelt water to basin runoff. 2) The spatial distribution of multi-year average precipitation and air temperature, derived from spatial interpolation, effectively captures the vertical climatic variability in the basin. These data serve as input for runoff simulation in the Manas River basin’s high mountainous areas where meteorological information is scarce. 3) Both the HBV model and the SRM demonstrate good performance in simulating daily and monthly runoff in the Manas River basin. However, the HBV model proves more effective in simulating peak flood flow, as it exhibits overall closer agreement with measured values. Thus, the HBV model shows better applicability for the Manas River basin.
关键词
HBV模型 /
SRM /
融雪径流 /
格点数据集 /
玛纳斯河流域
Key words
HBV model /
SRM /
snowmelt runoff /
grid point dataset /
Manas River basin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 穆艾塔尔·赛地, 丁建丽, 阿不都·沙拉木, 等. 天山北坡山区流域融雪径流模拟研究[J]. 干旱区研究, 2016, 33(3): 636-642.
[2] 魏天锋,刘志辉,王 元.积雪覆盖下的季节性冻土对融雪水出流的影响[J].干旱区研究,2015,32(3):435-441.
[3] ZHOU S, ZHANG W, GUO Y. Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin[J]. Water, 2019, 12(1): 76.
[4] 芮孝芳. 对流域水文模型的再认识[J]. 水利水电科技进展, 2018, 38(2): 1-7.
[5] 冉思红,王晓蕾,罗 毅.多模式预测气候变化及其对雪冰流域径流的影响[J].干旱区地理,2021,44(3):807-818.
[6] 朱明飞, 刘海隆. 基于SWAT模型干旱区内陆河流域径流成分的模拟分析: 以玛纳斯河上游为例[J]. 石河子大学学报(自然科学版), 2018, 36(1): 89-94.
[7] RAMABRAHMAM K,KEESARA V R,SRINIVASAN R,et al.Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model[J].Sustainability,2021,13(23):13158.
[8] 周 峰, 覃 姗, 岳春芳, 等. 基于SRM模型的金沟河流域融雪径流模拟[J]. 中国水利水电科学研究院学报, 2020, 18(5): 395-400.
[9] 赵 军, 黄永生, 宋阁庆, 等. SRM融雪径流模型在疏勒河流域上游的应用[J]. 水资源与水工程学报, 2015, 26(1): 72-76, 80.
[10]DEVI G, PUNJAB C U M. Snowmelt Runoff Estimation of Jhelum Basin with SRM Model[J]. International Journal of Engineering Research and, 2017, V6(4), doi: 10.17577/IJERTV6IS040040.
[11]REYNOLDS J E, HALLDIN S, SEIBERT J, et al. Definitions of Climatological and Discharge Days: Do they Matter in Hydrological Modelling?[J]. Hydrological Sciences Journal, 2018, 63(5): 836-844.
[12]马 虹, 程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用实验[J]. 科学通报, 2003, 48(19): 2088-2093.
[13]李海川, 郝振纯, 尼玛旦增, 等. HBV模型在汤旺河流域的应用研究[J]. 三峡大学学报(自然科学版), 2016, 38(5): 24-28, 35.
[14]MONTERO R A,SCHWANENBERG D,KRAHE P,et al. Moving Horizon Estimation for Assimilating H-SAF Remote Sensing Data into the HBV Hydrological Model[J]. Advances in Water Resources, 2016, 92: 248-257.
[15]谷 一,郝振纯,王国庆,等.HBV模型在逊毕拉河流域的适用性研究[J].水资源与水工程学报,2017,28(1):20-25.
[16]高胖胖. 阿姆河流域径流变化分析与水资源优化配置[D]. 北京: 华北电力大学, 2021.
[17]张 璞, 王 建, 刘 艳, 等. SRM模型在玛纳斯河流域春季洪水预警中的应用研究[J]. 遥感技术与应用, 2009, 24(4): 456-461.
[18]陈爱玲. 玛纳斯河流域雪盖衰退与融雪径流模拟[D]. 南京: 南京大学, 2014.
[19]陈伏龙, 李绍飞,冯 平, 等. 考虑融雪洪水跳跃变异的水库极限防洪风险复核[J]. 水利水电科技进展, 2019, 39(6): 9-16, 43.
[20]谷新晨, 肖森元,杨 广, 等. 基于CMADS和SWAT模型的玛纳斯河流域水文过程模拟[J]. 水资源与水工程学报, 2021, 32(2): 116-123.
[21]肖森元,杨 广, 何新林, 等. 玛纳斯河流域MIKE SHE水文模型率定[J]. 山地学报, 2021, 39(1): 1-9.
[22]孙铭悦, 吕海深, 朱永华, 等. 2套气象数据在资料缺乏地区的适用性评估: 以呼图壁河流域为例[J]. 干旱区研究, 2022, 39(1): 94-103.
[23]唐 榕, 王运涛, 李 敏, 等. 尼尔基水库上游格点降水数据适用性评估[J]. 水资源与水工程学报, 2019, 30(5): 26-31, 39.
[24]王云龙, 黄晓东, 邓 婕, 等. 欧亚大陆中高纬度区逐日无云积雪产品研发及验证[J]. 遥感技术与应用, 2016, 31(5): 1013-1021.
[25]张正勇. 玛纳斯河流域产流区水文过程模拟研究[D]. 石河子: 石河子大学, 2018.
[26]何柯琪,高 超, 谢京凯, 等. 基于径流和积雪资料的水文模型多目标率定[J]. 水力发电学报, 2019, 38(3): 65-74.
[27]SINGH J, KNAPP H V, ARNOLD J G, et al. Hydrological Modeling of the Iroquois River Watershed Using HSPF and Swat[J]. Journal of the American Water Resources Association, 2005, 41(2): 343-360.
[28]GUPTA H V, SOROOSHIAN S, YAPO P O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration[J]. Journal of Hydrologic Engineering, 1999, 4(2): 135-143.[29]KNOBEN W J M. Estimation of Non-stationary Hydrological Model Parameters for the Polish Welna catchment[D]. The Netherlands: University of Twente, 2013.
[30]MORIASI D N, ARNOLD J G, VAN LIEW M W, et al. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
[31]季 漩, 罗 毅. 资料稀缺高海拔山区降水量推算方法及在水文模拟中的应用[J]. 灌溉排水学报, 2011, 30(6): 103-106.
[32]杨武超. 寒旱区河川径流变化特征、归因与预测: 以玛纳斯河源区为例[D]. 杨凌: 西北农林科技大学, 2021.
[33]马佳培, 李弘毅,王 建, 等. 面向寒区水文模拟的区域气候模式降水订正方法对比[J]. 遥感技术与应用, 2019, 34(3): 655-666.
[34]杨永可. 天山中段玛纳斯河山区温度遥感反演研究[D]. 南京: 南京大学, 2018.
[35]李陇同. 稀疏样本下新疆玛纳斯河流域气温精细化制备研究[D]. 西安: 长安大学, 2020.
[36]谷新晨. 玛纳斯河流域产流区径流对气候变化的响应[D]. 石河子: 石河子大学, 2021.
[37]穆振侠. 高寒山区降水垂直分布规律及融雪径流模拟研究[D]. 乌鲁木齐: 新疆农业大学, 2010.
[38]王晓杰, 刘海隆, 包安明. 气候变化对玛纳斯河的径流量影响预测模拟分析[J]. 冰川冻土, 2012, 34(5): 1220-1228.
[39]宁理科, 刘海隆, 包安明. SRM模型的不确定性分析[J]. 石河子大学学报(自然科学版), 2012, 30(6): 755-760.
基金
兵团科技计划重点项目(2022DB024);兵团科技计划重大项目(2021AA003);国家自然科学基金项目(51769030)