为研究压气储能(CAES)储气库衬砌密封层开裂对裂隙围岩的两相渗流和传热特性的影响,基于COMSOL平台,利用弱形式PDE二次开发了双重介质两相渗流计算程序,并进行了验证。以某CAES储气库为背景,建立了储气库裂隙岩体两相渗流传热数值模型,研究了充放气过程中衬砌开裂对裂隙围岩的两相渗流和传热特性的影响。结果表明:① 衬砌开裂会使围岩裂隙和孔隙内渗流压力升高,同时导致裂隙和孔隙之间的渗流压力差增大,最大压差增大1.5 MPa。② 运行210 d后,衬砌开裂将导致渗漏的气体水平扩散范围由无开裂的54 m扩大至66.7 m。③ 初次充放气条件下,衬砌内外侧温差大,有可能超过100 K;衬砌开裂和围岩裂隙对衬砌和围岩温度分布影响微弱。因此衬砌开裂会造成渗流压力扩散,但对温度分布影响微弱。
Abstract
The aim of this research is to investigate the impact of liner seal cracking on the two-phase seepage and heat transfer characteristics of fractured surrounding rock in compressed air energy storage (CAES) cavern. A dual-media two-phase seepage calculation program was developed and validated based on a weak form of PDE using COMSOL. On this basis, a numerical model was constructed to examine the impact of liner cracking on two-phase seepage and heat transfer characteristics in the fractured rock mass during gas charging and discharging processes. The findings reveal that liner cracking induces an increase in seepage pressure within both the fractures and pore spaces of the surrounding rock, and consequently leads to an amplified seepage pressure difference between the fractures and pore spaces, with a maximum pressure difference increase of 1.5 MPa. Over a period of 210 days of operation, liner cracking results in the expansion of the horizontal gas diffusion range from 54 m in the absence of cracking to 66.7 m. Under the initial gas charging and discharging conditions, a significant temperature difference exceeding 100 K can be observed between the inner and outer sides of the liner. However, liner cracking and fractures in surrounding rock exhibit minimal effects on the temperature distribution of both the liner and the surrounding rock. It is evident that while liner cracking facilitates seepage pressure diffusion, its impact on temperature distribution remains negligible.
关键词
压缩空气储能 /
双重介质 /
两相渗流传热 /
COMSOL弱形式 /
裂隙岩体
Key words
compressed air energy storage /
dual-media /
two-phase seepage and heat transfer /
COMSOL weak form /
fractured rock mass
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 叶 斌, 程子睿, 彭益成. 压气储能洞室气密性影响因素分析[J]. 同济大学学报(自然科学版), 2016, 44(10): 1526-1532.
[2] BUDT M, WOLF D, SPAN R, et al. A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments[J]. Applied Energy, 2016, 170: 250-268.
[3] 高建强, 庄绪增, 敬 赛. CAES电站储气室热力学特性的数值模拟研究[J]. 电力科学与工程, 2018, 34(12): 72-77.
[4] 蒋中明, 唐 栋, 李 鹏, 等. 压气储能地下储气库选型选址研究[J]. 南方能源建设, 2019, 6(3): 6-16.
[5] KUSHNIR R, DAYAN A, ULLMANN A. Temperature and Pressure Variations within Compressed Air Energy Storage Caverns[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5616-5630.
[6] RAJU M, KUMAR KHAITAN S. Modeling and Simulation of Compressed Air Storage in Caverns: A Case Study of the Huntorf Plant[J]. Applied Energy, 2012, 89(1): 474-481.
[7] HE W,LUO X,EVANS D,et al.Energy Storage of Compressed Air in Cavern and Cavern Volume Estimation of the Large-scale Compressed Air Energy Storage System[J]. Applied Energy, 2017, 208: 745-757.
[8] XIA C, ZHOU Y, ZHOU S, et al. A Simplified and Unified Analytical Solution for Temperature and Pressure Variations in Compressed Air Energy Storage Caverns[J]. Renewable Energy, 2015, 74: 718-726.
[9] 刘澧源, 蒋中明, 王江营, 等. 压气储能电站地下储气库之压缩空气热力学过程分析[J]. 储能科学与技术, 2018, 7(2): 232-239.
[10] 万 发, 蒋中明, 唐 栋. CAES储气库设计参数对其热力学特性影响[J]. 储能科学与技术, 2021, 10(1): 370-378.
[11] RUTQVIST J, KIM H-M, RYU D-W, et al. Modeling of Coupled Thermodynamic and Geomechanical Performance of Underground Compressed Air Energy Storage in Lined Rock Caverns[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 71-81.
[12] 周舒威, 夏才初, 张平阳, 等. 地下压气储能圆形内衬洞室内压和温度引起应力计算[J]. 岩土工程学报, 2014, 36(11): 2025-2035.
[13] 蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68.
[14] 夏才初, 赵海斌, 梅松华, 等. 埋深对压气储能内衬洞室稳定性影响的定量分析[J]. 绍兴文理学院学报(自然科学), 2016, 36(3): 1-7.
[15] KIM H-M, RUTQVIST J, KIM H, et al. Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 573-584.
[16] 周 瑜, 夏才初, 赵海斌, 等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报, 2017, 36(2): 297-309.
[17] NOROUZI M, DORRANI S, SHOKRI H, et al. Effects of Viscous Dissipation on Miscible Thermo-Viscous Fingering Instability in Porous Media[J]. International Journal of Heat and Mass Transfer, 2019, 129: 212-223.
[18] AMIRI H A A, HAMOUDA A A. Pore-scale Simulation of Coupled Two-phase Flow and Heat Transfer through Dual-Permeability Porous Medium[C]∥Proceedings of 2012 COMSOL Conference. Milan, Italy, October 10-12, 2012.
[19] AKHLAGHI AMIRI H A, HAMOUDA A A. Pore-scale Modeling of Non-isothermal Two Phase Flow in 2D Porous Media: Influences of Viscosity, Capillarity, Wettability and Heterogeneity[J]. International Journal of Multiphase Flow, 2014, 61: 14-27.
[20] VASILE N S, MONTEVERDE VIDELA A H A, SPECCHIA S. Effects of the Current Density Distribution on a Single-cell DMFC by Tuning the Anode Catalyst in Layers of Gradual Loadings: Modelling and Experimental Approach[J]. Chemical Engineering Journal, 2017, 322: 722-741.
[21] FAHAD M, HUSSAIN F, RAHMAN S S, et al. Experimental Investigation of Upscaling Relative Permeability for Two Phase Flow in Fractured Porous Media[J]. Journal of Petroleum Science and Engineering, 2017, 149: 367-382.
[22] 李 军, 张 杨, 胡大伟, 等. 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.
[23] 宋 杨, 张 森, 王启航. 核电站安全壳混凝土气体密封性研究[J]. 硅酸盐通报, 2019, 38(3): 777-782, 787.
基金
国家自然科学基金项目(52178381,51778070)