长江科学院院报 ›› 2023, Vol. 40 ›› Issue (9): 181-187.DOI: 10.11988/ckyyb.20220515

• 水利信息化 • 上一篇    下一篇

基于Sentinel2-L1C的江汉平原水产养殖区水质参数反演

邹志科1, 余蕾1, 张煜1, 王文娟1, 赵永立2, 孙建东3, 程青雷3   

  1. 1.长江科学院 农业水利研究所,武汉 430010;
    2.武汉珈和科技有限公司,武汉 430079;
    3.中国水电基础局有限公司,天津 301700
  • 收稿日期:2022-05-13 修回日期:2022-07-25 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 张 煜(1971-),男,湖北武汉人,正高级工程师,博士,研究方向为摄影测量与遥感。E-mail:zhangyu_1999@126.com
  • 作者简介:邹志科(1990-),男,湖北汉川人,工程师,博士,研究方向为地下水流数值模拟。E-mail:971278375@qq.com
  • 基金资助:
    国家自然科学基金委员会-中华人民共和国水利部-中国长江三峡集团有限公司长江水科学研究联合基金项目(U2040213);中央级公益性科研院所基本科研业务费项目(CKSF2021452/NY,CKSF2021299/NY,CKSF2019251/NY)

Inversion of Water Quality Parameters in Jianghan Plain Based on Sentinel2-L1C Image

ZOU Zhi-ke1, YU Lei1, ZHANG Yu1, WANG Wen-juan1, ZHAO Yong-li2, SUN Jian-dong3, CHENG Qing-lei3   

  1. 1. Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China;
    2. Wuhan Jiahe Technology Co., Ltd., Wuhan 430079, China;
    3. Sinohydro Foundation Engineering Co., Ltd., Tianjin 301700,China
  • Received:2022-05-13 Revised:2022-07-25 Online:2023-09-01 Published:2023-09-01

摘要: 遥感技术已成为监测内陆水域水质的一种有效手段,为研究江汉平原水产养殖区域内水体总磷、总氮和化学需氧量浓度的变化规律,基于Sentinel2-L1C遥感数据建立水体透明度、悬浮物浓度、叶绿素a浓度3种光学活性物质浓度的反演模型,结合推算出的水体透明度、悬浮物浓度和叶绿素a浓度与拟合点水体实测总磷、总氮和化学需氧量浓度分别建立关联,构建江汉平原拟合点水体总磷、总氮和化学需氧量浓度3种非光学活性物质浓度的间接反演模型并进行模型的率定验证。结果表明:水体透明度与水体总磷浓度具有较好相关性,水体透明度越高,水质越好,水体总磷浓度越低;水体悬浮物浓度与水体总氮浓度具有较高相关性,水体悬浮物浓度越高,水质越差,对应水体总氮浓度越高;水体叶绿素a浓度越高,对应水体化学需氧量浓度越高。构建水体总磷浓度、总氮浓度和化学需氧量浓度的间接反演模型,确定性系数均>0.6,并对江汉平原监测点水体的总磷、总氮和化学需氧量浓度进行了模拟和分析,结论与水产养殖区内饲料投喂主要时期的影响规律基本保持一致。研究结果对于探测江汉平原水产养殖区大尺度范围水质参数的时空演变具有一定的实用价值。

关键词: 水质参数, Sentinel2-L1C影像, 江汉平原, 光学活性物质, 反演模型

Abstract: Remote sensing technology has emerged as a powerful tool for monitoring inland water quality. To investigate changes in concentrations of total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD) in the aquaculture area of Jianghan Plain, we developed inversion models utilizing Sentinel2-L1C remote sensing data. These models are based on three optical active substances: water transparency, suspended matter concentration, and Chl-a concentration. By correlating the calculated water transparency, suspended solids concentration, and Chl-a concentration with TP, TN, and COD concentrations at regional water fitting points, we established indirect inversion models to estimate the concentrations of these substances and validated the models using fitting points data. Our results demonstrate a strong correlation between water transparency and TP concentration. Higher water transparency indicates better water quality and lower TP concentration. The concentration of suspended matter in water is highly correlated with the TN concentration. Increased suspended matter concentration indicates inferior water quality and higher TN concentration. Additionally, higher water Chl-a concentration corresponds to higher COD. The deterministic coefficients of the indirect fitting models for TP concentration, TN concentration, and COD were all greater than 0.6. Furthermore, the TP concentration, TN concentration, and COD concentration in water bodies of monitoring points in Jianghan Plain were simulated. The results align with the expected patterns in feeding period and reflect the spatio-temporal evolution of water quality parameters in the aquaculture areas of Jianghan Plain. This research contributes practical insights into understanding the dynamics of large-scale water quality parameters in aquaculture areas.

Key words: water quality parameters, Sentinel2-L1C image, Jianghan Plain, optically active compounds, retrieval model

中图分类号: