改性正渗透膜去除水中全氟化合物研究

金海洋, 余婵, 张为, 刘敏, 张雨婷, 孙婷婷

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 44-50.

PDF(6057 KB)
PDF(6057 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 44-50. DOI: 10.11988/ckyyb.20220446
水环境与水生态

改性正渗透膜去除水中全氟化合物研究

  • 金海洋1,2, 余婵1,2, 张为1,2, 刘敏1,2, 张雨婷1,2, 孙婷婷1,2
作者信息 +

Removal of Perfluorinated Compounds from Water by Modified Forward Osmosis Membrane

  • JIN Hai-yang1,2, YU Chan1,2, ZHANG Wei1,2, LIU Min1,2, ZHANG Yu-ting1,2, SUN Ting-ting1,2
Author information +
文章历史 +

摘要

如何有效控制和去除水环境中的全氟类化合物(PFCs)是目前环境保护科学研究领域的热点问题之一。正渗透膜分离技术因其独特的优势,在去除水中全氟化合物领域表现出巨大潜力。研究了自主研制的氯化银表面改性正渗透膜对水中典型全氟类化合物(PFCs,即全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS))的去除性能,分析了膜表面性能与PFCs去除效果的关系,探讨了水中共存物质对改性正渗透膜去除PFOS性能的影响。研究结果显示:改性膜的表面亲水性能和表面负电荷数量均得到提升,同时改性膜表面具有更高的水通量和PFCs截留率;一定范围内随着改性膜矿化度的增加,膜的水通量与对PFCs的截留率逐渐增大,但氯化银过量沉积会降低正渗透膜对PFCs的截留性能;矿化改性中交替浸泡4次制备出的正渗透膜具有最佳的全氟化合物去除效果,对PFOA和PFOS的去除率分别为96.2%和95.7%,同时也具有最大的水通量22.5 L/(m2·h);正渗透膜与PFCs的相互作用方式主要为疏水作用和静电相互作用;改性正渗透膜主要通过降低与PFCs的疏水作用以及增强与PFCs的静电排斥作用,从而实现对PFCs的高效截留;水中不同物质共存会对正渗透膜与PFCs的之间疏水作用及静电排斥作用产生影响,从而影响膜对PFCs的截留性能。

Abstract

Research on controlling and removing perfluorinated compounds (PFCs) in water has become a prominent topic in environmental protection science. Forward osmosis (FO) membrane separation technology demonstrates significant potential in removing PFCs from water due to its unique advantages. This study focuses on the removal performance of two typical PFCs, namely PFOA and PFOS, in water using a self-developed composite thin layer membrane called silver chloride surface mineralized polyamide (TFC) FO membrane. The relationship between membrane surface performance and PFCs removal efficiency is analyzed. The influence of coexisting substances in water on the removal performance is also examined. Results reveal that the modified membrane exhibits enhanced surface hydrophilicity and increased negative charge. Both hydrophilicity and negative charge on the membrane surface increase with a higher degree of mineralization. The modified membrane also demonstrates improved forward osmosis performance, characterized by higher water flux and greater PFCs rejection. These improvements are observed as the mineralization degree increases within a certain range. However, excessive deposition of silver chloride may decrease the membrane’s rejection of PFCs. The TFC FO membrane, prepared by alternately soaking for four times during mineralization modification, demonstrates the most effective removal of PFCs, with removal rates of 96.2% for PFOA and 95.7% for PFOS. Furthermore, it exhibits the highest water flux at 22.5 L/m2·h. The interaction between the FO membrane and PFCs is primarily governed by hydrophobic and electrostatic forces. The modified FO membrane effectively rejects PFCs by reducing the hydrophobic effect and enhancing the electrostatic repulsion between the membrane and PFCs. Yet, the presence of different substances in water can influence the hydrophobic and electrostatic interaction between the FO membrane and PFCs, ultimately affecting the rejection performance of PFCs.

关键词

全氟化合物 / 水环境 / 正渗透膜 / 改性 / 去除机理

Key words

perfluorinated compounds / water environment / forward osmosis membrane / modification / removal mechanism

引用本文

导出引用
金海洋, 余婵, 张为, 刘敏, 张雨婷, 孙婷婷. 改性正渗透膜去除水中全氟化合物研究[J]. 长江科学院院报. 2023, 40(10): 44-50 https://doi.org/10.11988/ckyyb.20220446
JIN Hai-yang, YU Chan, ZHANG Wei, LIU Min, ZHANG Yu-ting, SUN Ting-ting. Removal of Perfluorinated Compounds from Water by Modified Forward Osmosis Membrane[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 44-50 https://doi.org/10.11988/ckyyb.20220446
中图分类号: X703.1   

参考文献

[1] 王 飞, 李晓明, 李建勇, 等. 水中全氟化合物的污染处理研究进展[J]. 水处理技术, 2016, 42(11): 5-11.
[2] 罗梅清, 卓琼芳, 许振成, 等. 全氟化合物处理技术的研究进展[J]. 环境科学与技术, 2015, 38(8): 60-67.
[3] MAISONET M, TERRELL M L, MCGEEHIN M A, et al. Maternal Concentrations of Polyfluoroalkyl Compounds during Pregnancy and Fetal and Postnatal Growth in British Girls[J]. Environmental Health Perspectives, 2012, 120(10): 1432-1437.
[4] DARROW L A, STEIN C R, STEENLAND K. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005-2010[J]. Environmental Health Perspectives, 2013, 121(10): 1207-1213.
[5] 杨圣舒, 刘 美, 张 迪. 地表水中典型全氟化合物的污染特性及降解机理研究[J]. 环境科学与管理, 2017, 42(3): 39-42.
[6] 张 明, 唐访良, 俞雅雲, 等. 钱塘江(杭州段)表层水中全氟化合物的残留水平及分布特征[J]. 环境科学, 2015, 36(12): 4471-4478.
[7] 杨永亮, 路国慧, 杨伟贤, 等. 沈阳地区水环境和生物样品中全氟化合物的污染分布特征[J]. 环境科学学报, 2010, 30(10): 2097-2107.
[8] 牛军峰, 王 冲, 商恩香. 水中全氟化合物电化学去除技术研究进展[J]. 中国科学: 技术科学, 2017, 47(12): 1233-1255.
[9] ARVANITI O S,VENTOURI E I,STASINAKIS A S,et al. Occurrence of Different Classes of Perfluorinated Compounds in Greek Wastewater Treatment Plants and Determination of Their Solid-Water Distribution Coefficients[J].Journal of Hazardous Materials,2012,239/240:24-31.
[10] STASINAKIS A S, THOMAIDIS N S, ARVANITI O S, et al. Contribution of Primary and Secondary Treatment on the Removal of Benzothiazoles, Benzotriazoles, Endocrine Disruptors, Pharmaceuticals and Perfluorinated Compounds in a Sewage Treatment Plant[J]. Science of the Total Environment, 2013, 463/464: 1067-1075.
[11] YU Q, ZHANG R, DENG S, et al. Sorption of Perfluorooctane Sulfonate and Perfluorooctanoate on Activated Carbons and Resin: Kinetic and Isotherm Study[J]. Water Research, 2009, 43(4): 1150-1158.
[12] YAMAMOTO T, NOMA Y, SAKAI S-I, et al. Photodegradation of Perfluorooctane Sulfonate by UV Irradiation in Water and Alkaline 2-Propanol[J]. Environmental Science & Technology, 2007, 41(16): 5660-5665.
[13] GIRI R R, OZAKI H, MORIGAKI T, et al. UV Photolysis of Perfluorooctanoic Acid (PFOA) in Dilute Aqueous Solution[J]. Water Science and Technology, 2011, 63(2): 276-282.
[14] LI X, ZHANG P, JIN L, et al. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism[J]. Environmental Science & Technology, 2012, 46(10): 5528-5534.
[15] LI Z, ZHANG P, SHAO T, et al. Different Nanostructured In2O3 for Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA)[J]. Journal of Hazardous Materials, 2013, 260: 40-46.
[16] STEINLE-DARLING E, REINHARD M. Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals[J]. Environmental Science & Technology, 2008, 42(14): 5292-5297.
[17] ZHAO C, ZHANG J, HE G, et al. Perfluorooctane Sulfonate Removal by Nanofiltration Membrane the Role of Calcium Ions[J]. Chemical Engineering Journal, 2013, 233: 224-232.
[18] WANG T, ZHAO C, LI P, et al. Fabrication of Novel Poly(m-phenylene isophthalamide) Hollow Fiber Nanofiltration Membrane for Effective Removal of Trace Amount Perfluorooctane Sulfonate from Water[J]. Journal of Membrane Science, 2015, 477: 74-85.
[19] RATTANAOUDOM R, VISVANATHAN C. Removal of PFOA by Hybrid Membrane Filtration Using PAC and Hydrotalcite[J]. Desalination and Water Treatment, 2011, 32(1/2/3): 262-270.
[20] 金海洋, 黄阳波, 于 萍. 正渗透技术及其应用[J]. 工业用水与废水, 2014, 45(1): 5-9.
[21] MI B, ELIMELECH M. Organic Fouling of Forward Osmosis Membranes: Fouling Reversibility and Cleaning without Chemical Reagents[J]. Journal of Membrane Science, 2010, 348(1/2): 337-345.
[22] LEE S, BOO C, ELIMELECH M, et al. Comparison of Fouling Behavior in Forward Osmosis (FO) and Reverse Osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1/2): 34-39.
[23] CATH T Y, HANCOCK N T, LUNDIN C D, et al. A Multi-barrier Osmotic Dilution Process for Simultaneous Desalination and Purification of Impaired Water[J]. Journal of Membrane Science, 2010, 362(1/2): 417-426.
[24] ELIMELECH M, PHILLIP W A. The Future of Seawater Desalination: Energy, Technology, and the Environment[J]. Science, 2011, 333(6043): 712-717.
[25] JIN H, RIVERS F, YIN H, et al. Synthesis of AgCl Mineralized Thin Film Composite Polyamide Membranes to Enhance Performance and Antifouling Properties in Forward Osmosis[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 1064-1073.
[26] SMITHA B, SUHANYA D, SRIDHAR S, et al. Separation of Organic-Organic Mixtures by Pervaporation—A Review[J]. Journal of Membrane Science, 2004, 241(1): 1-21.
[27] LI F, MENG J, YE J, et al. Surface Modification of PES Ultrafiltration Membrane by Polydopamine Coating and Poly(ethylene glycol) Grafting: Morphology, Stability, and Anti-Fouling[J]. Desalination, 2014, 344: 422-430.
[28] JIN H, HUANG Y, LI H, et al. Fabrication of BaSO4-based Mineralized Thin-film Composite Polysulfone/Polyamide Membranes for Enhanced Performance in a Forward Osmosis Process[J]. RSC Advances, 2015(97):79774-79782.
[29] MULDER M. Basic Principles of Membrane Technology[M]. Edition 2. Dordrecht: Kluwer Academic Publishers, 1996.
[30] ISHIGAMI T, AMANO K, FUJII A, et al. Fouling Reduction of Reverse Osmosis Membrane by Surface Modification via Layer-by-Layer Assembly[J]. Separation and Purification Technology, 2012, 99: 1-7.
[31] 张 一. 水中痕量全氟化合物的分析检测及纳滤膜去除特性研究[D]. 西安: 西安建筑科技大学, 2017.

基金

中央级公益性科研院所基本科研业务费项目(CKSF2019177/SH,CKSF2021442/SH,CKSF2019210/SH);国家自然科学基金项目(51809010,41907155);湖北省自然科学基金一般面上项目(2020CFB663);湖北省自然科学青年基金项目(2019CFB406)

PDF(6057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/