溢流坝壅水条件下的弯道水流特性

潘云文, 刘欣, 杨克君

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 84-91.

PDF(8899 KB)
PDF(8899 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 84-91. DOI: 10.11988/ckyyb.20220353
水力学

溢流坝壅水条件下的弯道水流特性

  • 潘云文1,2, 刘欣3, 杨克君2
作者信息 +

Flow Characteristics in a Meandering Channel under Backwater Condition Caused by Overflow Dam

  • PAN Yun-wen1,2, LIU Xin3, YANG Ke-jun2
Author information +
文章历史 +

摘要

为探讨溢流坝壅水条件下的弯道水流特性,概化设计了一在出口处布设有溢流坝的连续弯道模型,利用声学多普勒流速仪(ADV)和数字波高仪测得模型特征断面的流速、水位数据。试验结果显示:弯段绝对水面横比降随相对坝高的增大而减小;弯段下半弯的水面纵比降为正,而从直线过渡段进口至下游邻近弯顶的水面纵比降为负,但其绝对水面纵比降均随相对坝高的增大而减小;连续弯道的直线过渡段也存在二次流且其旋转方向与上游弯段二次流的旋转方向相同;当相对坝高增大时,流道各断面的垂线平均纵向流速均不同程度的减小;当相对坝高增大时,各断面最大紊动能减小;纵向脉动对紊动能的贡献最大,横向脉动次之,垂向脉动最小;雷诺应力Ruv的正负能近似标示弯道直线过渡段进出口断面的横向水流运动,当雷诺应力Ruv为正时,流体将从左侧流向右侧;当雷诺应力Ruv为负时,流体将从右侧流向左侧。

Abstract

To investigate the flow characteristics in meandering channels under backwater conditions caused by overflow dams, a meandering channel model with an overflow dam at its outlet is designed and constructed. Velocity and water level data in thirteen cross sections are measured using an Acoustic Doppler Velocimeter (ADV) and a digital water level altimeter. The experimental results demonstrate that the absolute transverse water surface gradients in curved segments decrease as the relative dam height increases. The longitudinal water surface gradients between a bending apex and the inlet of the downstream adjacent crossover area exhibit positive values, while the longitudinal water surface gradients between the inlet of a crossover area and the downstream adjacent bending apex display negative values. Nevertheless, the magnitudes of these gradients diminish with the increasing relative dam height. Moreover, secondary flow vortex blobs are observed in the crossover areas of the meandering channel, rotating in the same direction as those in the upstream adjacent curved segment. With an increase in relative dam height, the depth-averaged longitudinal velocities along the meandering channel decrease to varying extents. Likewise, the maximum turbulent kinetic energy in any cross section decreases as the relative dam height increases. Regarding the distribution of turbulent kinetic energy, the longitudinal velocity fluctuation contributes the most, followed by the transverse velocity fluctuation, while the vertical velocity fluctuation contributes the least. The Reynolds stress (Ruv) can be used as an approximate indicator of the directions of cross-sectional transverse flow movements at the inlets and outlets of the crossover areas. If the Reynolds stress value is positive in a specific region, the fluid will flow from left to right; otherwise, the fluid will flow from right to left.

关键词

溢流坝 / 壅水条件 / 弯道 / 水流运动 / 紊动特性

Key words

overflow dam / backwater condition / meandering channel / flow motion / turbulent characteristics

引用本文

导出引用
潘云文, 刘欣, 杨克君. 溢流坝壅水条件下的弯道水流特性[J]. 长江科学院院报. 2023, 40(8): 84-91 https://doi.org/10.11988/ckyyb.20220353
PAN Yun-wen, LIU Xin, YANG Ke-jun. Flow Characteristics in a Meandering Channel under Backwater Condition Caused by Overflow Dam[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 84-91 https://doi.org/10.11988/ckyyb.20220353
中图分类号: TV133.1   

参考文献

[1] 童思陈, 钟 亮, 许光祥. 弯道水流环流结构的试验研究[J]. 水运工程, 2009(10): 32-35.
[2] 许 栋, 白玉川, 谭 艳. 正弦派生曲线弯道中水沙运动特性动床试验[J]. 天津大学学报,2010,43(9):762-770.
[3] 胡旭跃, 张青松, 马利军. 过渡段对连续弯道水流影响的数值模拟[J]. 水科学进展, 2011, 22(6): 851-858.
[4] 刘曾美, 吴俊校, 黄国如. 河渠弯道缓流水面曲线计算探讨[J]. 水利水运工程学报, 2008(2): 54-59.
[5] 许光祥, 童思陈, 钟 亮. 弯道水面横比降沿程分布特性研究[J]. 水力发电学报, 2009, 28(4): 114-118.
[6] KIM J S, SEO I W, BAEK D, et al. Recirculating Flow-Induced Anomalous Transport in Meandering Open-Channel Flows[J]. Advances in Water Resources, 2020, 141: 103603.
[7] PAN Y, LIU X, YANG K. Effects of Discharge on the Velocity Distribution and Riverbed Evolution in a Meandering Channel[J]. Journal of Hydrology, 2022, 607: 127539.
[8] 孙东坡, 朱岐武, 张耀先, 等. 弯道环流流速与泥沙横向输移研究[J]. 水科学进展, 2006, 17(1): 61-66.
[9] QIN C, SHAO X, ZHOU G. Comparison of Two Different Secondary Flow Correction Models for Depth-Averaged Flow Simulation of Meandering Channels[J]. Procedia Engineering, 2016, 154: 412-419.
[10] VAN BALEN W, UIJTTEWAAL W S J, BLANCKAERT K. Large-Eddy Simulation of a Mildly Curved Open-Channel Flow[J]. Journal of Fluid Mechanics, 2009, 630: 413-442.
[11] 李志威, 方春明. 弯道水流的能量耗散规律及其应用[J]. 中国水利水电科学研究院学报, 2010, 8(3): 214-219.
[12] ENGEL F L, RHOADS B L. Velocity Profiles and the Structure of Turbulence at the Outer Bank of a Compound Meander Bend[J]. Geomorphology, 2017, 295: 191-201.
[13] 钟 亮, 潘云文, 蒋孜伟. 长江重庆主城区河段水沙变化特征分析[J]. 泥沙研究, 2015(6): 65-71.
[14] 张桂花, 刘少斌, 刘 欣. 大石涧水库溢流特性与坝下河道冲刷模型试验研究[J]. 水电能源科学, 2021, 39(2): 74-77.
[15] 秦 鹏, 励 泽, 吴钧辉, 等. 一种新型溢流坝面结构的消能效果数值模拟研究[J]. 水电能源科学, 2021, 39(6): 77-80.
[16] 孙雅珍. 简明理论力学[M]. 北京: 中国电力出版社, 2016.
[17] 钱 宁, 张 仁,周志德. 河床演变学[M]. 北京: 科学出版社, 1987.

基金

国家自然科学基金项目(51539007, 51979181, 51279117)

PDF(8899 KB)

Accesses

Citation

Detail

段落导航
相关文章

/