底栖动物群落变化能敏感地反映出河流生态系统受损情况,常用于水生态健康评价。本研究调查了东江下游地区河流的底栖动物,首次构建了该地区受损河流底栖动物完整性(B-IBI)评价体系,并探究影响河流水生态健康的主要因素。结果表明参照位点B-IBI在2.23~3.53之间,处于优或良状态;受损河流B-IBI在0.04~2.61之间,大部分健康状态不佳,其中较差和很差状态的占比为45%。B-IBI与溶解氧、CODCr、BOD5、氨氮、总磷、阴离子表面活性剂密切相关,水体受污染是导致河流生态系统不健康的主要原因。河流周边高强度开发建设也会给底栖动物尤其是水生昆虫类群造成负面影响。在感潮河段进行B-IBI评价时,建议选择有针对性的候选参数构建评价体系以及确定评价标准。
Abstract
Changes in zoobenthos can effectively indicate the damage to river ecosystems and are commonly used in aquatic ecological health assessments. We investigated the zoobenthos in the lower reaches of the Dongjiang River. For the first time, we establish a benthic-index of biotic integrity (B-IBI) evaluation system for assessing damaged rivers in this region, and explore the main factors influencing aquatic ecological health. The results demonstrate that the B-IBI values of reference sites range from 2.23 to 3.53, indicating excellent or good conditions. In contrast, the B-IBI values of damaged rivers range from 0.04 to 2.61, with most of them being in poor health, including both poor and very poor states accounting for 45%. Dissolved oxygen, CODCr, BOD5, ammonia nitrogen, total phosphorus, and anionic surfactants exhibit significant correlations with B-IBI values. Water pollution emerges as the primary cause for the deterioration of river ecosystems. Additionally, the high-intensity development and construction activities around rivers negatively impact zoobenthos, particularly aquatic insect communities. For tidal reaches, we recommend selecting targeted parameters to construct an evaluation system and establish evaluation standards when conducting B-IBI assessments.
关键词
河流生态系统 /
水生态健康评价 /
东江下游 /
底栖动物 /
B-IBI
Key words
river ecological system /
aquatic ecological health assessment /
lower reaches of Dongjiang River /
zoobenthos /
Benthic-Index of Biotic Integrity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 唐 涛, 蔡庆华, 刘建康. 河流生态系统健康及其评价[J]. 应用生态学报, 2002, 13(9): 1191-1194.
[2] 陈求稳, 张建云, 莫康乐, 等. 水电工程水生态环境效应评价方法与调控措施[J]. 水科学进展, 2020, 31(5): 793-810.
[3] 刘昌明, 刘晓燕. 河流健康理论初探[J]. 地理学报, 2008, 63(7): 683-692.
[4] 杨强强, 徐光来, 章 翩, 等. 青弋江流域大型底栖动物群落结构及水质评价[J]. 生态学报, 2022, 42(10): 4169-4180.
[5] 尹子龙, 杨源浩, 郭刘超, 等. 石臼湖江苏段底栖动物群落结构及与水环境因子的关系[J]. 水产学杂志, 2021, 34(4): 59-65.
[6] 刘 睿, 李若男. 漓江大型底栖动物空间分布及水力驱动因子[J]. 长江科学院院报, 2022, 39(8): 34-40.
[7] 刘 祥, 陈 凯, 陈求稳, 等. 淮河流域典型河流夏秋季底栖动物群落特征及其与环境因子的关系[J]. 环境科学学报, 2016, 36(6): 1928-1938.
[8] 陈皓阳, 赵 瑞, 李静纳, 等. 深圳大鹏半岛主要河流底栖动物群落结构及水质生物学评价[J]. 环境昆虫学报, 2020, 42(1): 101-110.
[9] 冷龙龙, 张海萍, 张 敏, 等. 大型底栖动物快速评价指数BMWP在太子河流域的应用[J]. 长江流域资源与环境, 2016, 25(11): 1781-1788.
[10] 许静波, 张加雪, 徐 明, 等. 大纵湖大型底栖生物群落结构及水质生物学评价[J]. 人民长江, 2019, 50(1): 24-28.
[11] 王备新, 杨莲芳, 胡本进, 等. 应用底栖动物完整性指数B-IBI评价溪流健康[J]. 生态学报, 2005, 25(6): 1481-1490.
[12] 刘帅磊, 王 赛, 崔永德, 等. 亚热带城市河流底栖动物完整性评价: 以流溪河为例[J]. 生态学报, 2018, 38(1): 342-357.
[13] BRINKHURST R O, JAMIESON B G M. Aquatic Oligochaeta of the World[M]. Toronto: University of Toronto Press, 1971.
[14] MORSE J C, YANG L, TIAN L. Aquatic Insects of China Useful For Monitoring Water Quality[M]. Nanjing: Hohai University Press, 1984.
[15] EPLER J H. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina[M]. USA: Environmental Protection Agency, 2001.
[16] 王洪铸. 中国小蚓类研究: 附中国南极长城站附近地区两新种[M]. 北京: 高等教育出版社, 2002.
[17] 刘月英, 张文珍, 王跃先, 等. 中国经济动物志-淡水软体动物[M]. 北京: 科学出版社, 1979.
[18] 王祯瑞. 中国动物志·软体动物门·双壳纲·贻贝目[M]. 北京: 科学出版社, 1997.
[19] 杨 潼. 中国动物志.环节动物门.蛭纲[M]. 北京: 科学出版社, 1996.
[20] 魏复盛. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[21] 国家水体污染控制与治理科技重大专项流域水污染防治监控预警主题“流域水生态环境质量监测与评价研究”课题组. 河流水生态环境质量评价技术指南(试行)[R].北京:中国环境监测总站, 2014.
[22] BARBOUR M T, GERRITSEN J, GRIFFITH G E, et al. A Framework for Biological Criteria for Florida Streams Using Benthic Macroinvertebrates[J]. Journal of the North American Benthological Society, 1996, 15(2): 185-211.
[23] MAXTED J R, BARBOUR M T, GERRITSEN J, et al. Assessment Framework for Mid-Atlantic Coastal Plain Streams Using Benthic Macroinvertebrates[J]. Journal of the North American Benthological Society, 2000, 19(1): 128-144.
[24] BLOCKSOM K A,KURTENBACH J P,KLEMM D J,et al. Development and Evaluation of the Lake Macroinvertebrate Integrity Index (LMII) for New Jersey Lakes and Reservoirs[J]. Environmental Monitoring and Assessment, 2002, 77(3): 311-333.
[25] 黄子晏, 杜士林, 张亚辉, 等. 嘉兴河网大型底栖动物与氮磷、重金属的相关分析[J]. 农业环境科学学报, 2021, 40(8): 1787-1798.
[26] 晁爱敏, 于海燕, 盛天进, 等. 浦阳江干流河流生态缓冲带土地利用类型对水质和底栖动物的影响[J]. 环境工程学报, 2022, 16(1): 85-92.
[27] 王天慈, 王 芳, 渠晓东. 中国典型河口湿地底栖动物优势类群比较[J]. 中国环境监测, 2021, 37(3): 134-150.
基金
广东省水利科技创新项目(2020-26);中水珠江规划勘测设计有限公司科研项目(201904)