为探究平寨水库上游河流对库区水体的影响,以平寨水库及上游三岔河流域为研究对象,于2020年1月和7月分别在入库河流和库区采集了水样,运用数理统计、Durov图、相关分析、空间插值等方法对水样的水化学指标及氢氧同位素进行分析,初步探讨了其时空分布特征及成因。研究结果表明:①库区水体水化学特征极大程度上受到补给河流的影响,水库水体水化学类型与流域水体一致,以HCO-3-Ca2+型为主,枯水期水体离子质量浓度高于丰水期;②水体δD与δ18O存在明显的线性关系,氢氧同位素呈现夏高冬低的变化特征;水体接收降水补给的同时受到岩溶地下水影响,形成了与降水不同的季节变化特征;③库区及流域水体氢氧同位素大体上沿大气降水线分布,水体拟合方程斜率和截距小于全球及区域大气降水线,表明水体以降水补给为主,但经过了强烈的蒸发分馏作用;④枯水期下游及库区水体受降水影响显著,上游水体受蒸发影响,丰水期流域及库区水体氢氧同位素与离子质量浓度显著相关,水体受到蒸发作用影响明显。
Abstract
To investigate the influence of upstream rivers on the water body in Pingzhai Reservoir, water samples were collected from the inlet river and the reservoir area of Pingzhai Reservoir, as well as in the Sancha River Basin, in January and July 2020. The hydrochemical parameters and stable isotopes of the water samples were analyzed by using mathematical statistics, Durov plots, correlation analysis, and spatial interpolation. The spatiotemporal distribution characteristics and their causes were preliminarily explored. The study show that: (1) The hydrochemical characteristics of the reservoir water are highly influenced by the supply rivers, and the hydrochemical pattern of reservoir water is consistent with that in the basin, mainly HCO-3-Ca2+, with the ion concentration being higher during dry season than wet season. (2) The δD and δ18O of the water were linearly related, and the isotopes exhibit high values in summer and low values in winter. The reservoir water is supplied by precipitation on one hand, and is affected by karst groundwater on the other, thus displaying different seasonal variation characteristics from those of precipitation. (3) The hydrogen and oxygen isotopes of the water in both the reservoir and the basin are mostly distributed along the meteoric water line; however, the slope and interception values are smaller than global meteoric water line and local meteoric water line, indicating strong evaporation fractionation despite dominant supply from precipitation. (4)During wet season, the hydrogen and oxygen isotopes of the basin and the reservoir water are significantly correlated with ion concentration, while in dry season, the water bodies in the lower reaches and the reservoir are notably influenced by precipitation, and the upper reaches by evaporation.
关键词
氢氧同位素 /
水化学特征 /
蒸发分馏 /
大气降水线 /
平寨水库
Key words
hydrogen and oxygen isotopes /
water chemistry /
evaporative fractionation /
meteoric precipitation line /
Pingzhai Reservoir
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FERRONSKII V I. Isotope Applications in Hydrology and Hydrogeology[J]. Soviet Atomic Energy, 1968, 24(2): 244-247.
[2] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.
[3] HENDERSON A K,SHUMAN B N.Hydrogen and Oxygen Isotopic Compositions of Lake Water in the Western United States[J].GSA Bulletin,2009,121(7/8): 1179-1189.
[4] OHWOGHERE-ASUMA O, AWETO E K, NWANKWOALA H O, et al. Stable Isotopic Composition of Precipitation in a Tropical Rainforest Region of the Niger Delta, Nigeria[J]. Isotopes in Environmental and Health Studies, 2021, 57(1): 94-110.
[5] 宋 洋, 王圣杰, 张明军, 等. 塔里木河流域东部降水稳定同位素特征与水汽来源[J]. 环境科学, 2022, 43(1): 199-209.
[6] 张贵玲,角媛梅,何礼平,等.中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土,2015,37(4):1094-1103.
[7] 章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学D辑: 地球科学,2006,36(9): 850-859.
[8] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112.
[9] 梁丽娥, 李畅游, 史小红, 等. 内蒙古呼伦湖流域地表水与地下水氢氧同位素特征及湖水来源分析[J]. 湿地科学, 2017, 15(3): 385-390.
[10]黄 静, 周忠发, 丁圣君, 等. 双河洞流域氢氧同位素特征及其指示意义[J]. 地球与环境, 2022, 50(4): 516-525.
[11]冯盛楠, 刘兴起, 李华淑. 中国西部湖泊水体δD与δ18O的空间变化特征及其影响因素[J]. 湖泊科学, 2020, 32(4): 1199-1211.
[12]高娟琴, 于 扬, 王登红, 等. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征[J]. 岩矿测试, 2021, 40(3): 397-407.
[13]成玉婷, 李 鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014, 28(5): 129-133.
[14]蒲俊兵, 李建鸿, 吴 夏, 等. 热分层效应控制的水库水体氢氧同位素特征[J]. 水科学进展, 2016, 27(4): 561-568.
[15]但雨生, 周忠发, 李韶慧, 等. 基于Sentinel-2的平寨水库叶绿素a浓度反演[J]. 环境工程, 2020, 38(3): 180-185, 127.
[16]李韶慧, 周忠发, 但雨生, 等. 基于组合赋权贝叶斯模型的平寨水库水质评价[J]. 水土保持通报, 2020, 40(2): 211-217.
[17]张勇荣.基于空间量化模型的人类活动强度对喀斯特筑坝河流水质影响研究[D].贵阳:贵州师范大学,2021.
[18]孔 杰, 周忠发, 但雨生, 等. 基于分形插值模型的平寨水库水体富营养化评价[J]. 灌溉排水学报, 2021, 40(1): 123-130.
[19]秦 玲. 长江支流贵州段河流硫同位素特征及来源解析[D]. 贵阳: 贵州大学, 2017.
[20]张 昱. 石羊河流域不同环境背景下水库水化学特征及影响因素[D]. 兰州: 西北师范大学, 2020.
[21]何明霞, 张 兵, 夏文雪, 等. 天津七里海湿地水化学组成及主要离子来源分析[J]. 环境科学, 2021, 42(2): 776-785.
[22]宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7): 1809-1820.
[23]赵 辉,孟 莹,董维红,等.挠力河流域水体氢氧同位素与水化学特征[J].人民黄河,2017,39(1):73-78.
[24]吴敬禄, 林 琳, 曾海鳌, 等. 长江中下游湖泊水体氧同位素组成[J]. 海洋地质与第四纪地质, 2006, 26(3): 53-56.
[25]CRAIG H. Isotopic Variations in Meteoric Waters[J]. Science, 1961, 133(3465): 1702-1703.
[26]刘进达,赵迎昌,刘恩凯,等.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,1997(3):34-39.
[27]李亚举,张明军,王圣杰,等.我国大气降水中稳定同位素研究进展[J]. 冰川冻土,2011,33(3):624-633.
[28]张文杰,聂文婷,刘纪根,等.淮河流域大气降水氢氧稳定同位素变化规律及其气候意义[J].长江科学院院报,2022,39(11):21-28.
[29]DANSGAARD W. Stable Isotopes in Precipitation[J]. Tellus, 1964, 16(4): 436-468.
[30]丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676.
[31]胡勇博, 肖 薇, 钱雨妃, 等. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响[J]. 环境科学, 2019, 40(2): 573-581.
[32]李 广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11): 1458-1465.
[33]尹 观, 倪师军, 张其春. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254.
[34]张 金, 韩志伟, 吴 攀, 等. 岩溶流域典型农业区水体氢氧同位素的空间异质性及形成机制[J]. 中国农村水利水电, 2021(3): 134-138.
[35]沈贝贝, 吴敬禄, 吉力力·阿不都外力, 等. 巴尔喀什湖流域水化学和同位素空间分布及环境特征[J]. 环境科学, 2020, 41(1): 173-182.
[36]曾海鳌, 吴敬禄. 塔吉克斯坦水体同位素和水化学特征及成因[J]. 水科学进展, 2013, 24(2): 272-279.
基金
国家自然科学基金项目(U1612441,41661088);贵州高层次创新型人才培养计划——“百”层次人才项目(黔科合平台人才〔2016〕5674)