高延性纤维增强水泥基复合材料(ECC) 最早由美国密歇根大学Li教授于20世纪90年代设计提出,近年来在工业与民用建筑建领域中得到了较为广泛的应用。长江科学院提出了适用于水工建筑的水泥基复合材料(HECC)概念。根据不同水工结构功能要求,HECC应具有按需设计的拌和物性能和成型方法、中等强度、低弹性模量、按需设计的延伸率、较强的热稳定性、高耐久性、可控的裂缝宽度以及较为宽泛的原材料选择。在此基础上,提出了HECC在堆石坝新型坝基廊道、面板堆石坝新型防渗面板、堆石坝新型心墙结构、拱坝基础约束区抗震防裂结构等水工结构中的应用构想。同时,展望了HECC未来拟研究的方向。研究成果对于提高水工结构的安全性、经济性和耐久性有参考价值。
Abstract
Engineered Cementitious Composite (ECC) was first designed and proposed by Professor Li of the University of Michigan in the 1990s, and has been widely used in industrial and civil construction in recent years. Changjiang River Scientific Research Institute proposed the concept of Hydraulic Engineered Cementitious Composites (HECC) which is suitable for hydraulic construction.According to the functional requirements of different hydraulic structures, HECC should have the properties of mixtures and molding methods designed on demand, medium strength,low elastic modulus,elongation designed on demand,strong thermal stability,high durability,controllable crack widths and a wider choice of raw materials. On this basis, HECC is proposed to be applied in hydraulic structures such as the new dam foundation gallery of rockfill dams, the new anti-seepage face slabs of face-rockfill dams, the new core wall structures of rockfill dams, and the anti-seismic and anti-cracking structures of the foundation constraint area of arch dams. In addition, the future research direction of HECC is prospected.
关键词
HECC /
中等强度 /
可控裂缝宽度 /
高耐久性 /
水工结构
Key words
HECC /
medium strength /
controllable crack width /
high durability /
hydraulic structure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI V C. On Engineered Cementitious Composites (ECC)-A Review of the Material and Its Applications[J]. Advances in Concrete Technology, 2003, 1(3): 215-230.
[2] LI V C, WANG S, WU C. Tensile Strain-hardening Behavior of PVA-ECC[J]. ACI Materials Journal, 2001, 98(6): 483-492.
[3] LI V C, FISCHER G, KIM Y, et al. Durable Link Slabs for Jointless Bridge Decks Based on Strain-hardening Cementitious Composites Research Report RC-1438[R]. Michigan: University of Michigan, 2003.
[4] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008,41(6):45-60.
[5] LI V C, LEUNG C K Y. Steady-state and Multiple Cracking of Short Random Fiber Composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246.
[6] LI V C, STANG H, KRENCHEL H. Micromechanics of Crack Bridging in Fiber-reinforced Concrete[J]. Materials & Structure, 1993,26(8): 486.
[7] 阚黎黎, 施惠生, 翟广飞, 等. 高延展性纤维增强水泥基复合材料自愈合行为[J]. 硅酸盐学报, 2011, 39(4):682-689.
[8] LI V C. Progress and Application of Engineered Cementitious Composites[J]. Journal of the Chinese Ceramics Society, 2007, 35(4): 531-535.
[9] WU Li-shan, YU Zhi-hui, ZHANG Cong, et al. Design Approach, Mechanical Properties and Cost-Performance Evaluation of Ultra-high Performance Engineered Cementitious Composite (UHP-ECC): A Review[J]. Construction and Building Materials, 2022, 340: 127734.
[10] QIN Feng-jiang, ZHANG Zhi-gang, YIN Zhi-wei, et al. Use of High Strength, High Ductility Engineered Cementitious Composites (ECC) to Enhance the Flexural Performance of Reinforced Concrete Beams[J]. Journal of Building Engineering, 2020, 32: 101746.
[11] 石 妍, 颉志强, 覃 茜, 等. 巴塘水电站深厚覆盖层心墙堆石坝坝基廊道塑性铰接段HECC试验研究阶段成果报告[R]. 武汉:长江科学院, 2021.
[12] KIM J,KIM J,HA G J,et al. Tensile and Fiber Dispersion Performance of ECC (Engineered Cementitious Composites) Produced with Ground Granulated Blast Furnace Slag[J]. Cement Concrete Research,2007,37(7):1096-1105.
[13] SAHMARAN M, LI V C. Durability Properties of Micro-cracked ECC Containing High Volumes Fly Ash[J]. Cement Concrete Research, 2009, 39(11): 1033-1043.
[14] 曹明莉, 许 玲, 张 聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015,43(5):632-642.
[15] 田 砾, 王 飞, 赵铁军, 等. 骨料级配对应变硬化水泥基材料力学性能的影响[J]. 青岛理工大学学报, 2010, 31(2): 8-11.
[16] LI V C. Integrated Structures and Materials Design[J]. Materials & Structure, 2007, 40(4): 387-396.
[17] WU Xiao-wei, TIAN Jun, MA Hong-wei, et al. Investigation on Interface Fracture Properties and Nonlinear Fracture Model between ECC and Concrete Subjected to Salt Freeze-Thaw Cycles[J]. Construction and Building Materials, 2020, 259: 119785.
[18] TSUKAMOTO M. Tightness of Fiber Concrete[J]. Darmstadt Concrete, 1990, 5: 215-225.
[19] WANG K, JANSEN D, SHAH S, et al. Permeability Study Of Cracked Concrete[J]. Cement Concrete Research, 1997, 27(3): 381-393.
[20] 鲍文博, 王东旭, 王怀成. 绿色延性水泥基复合材料裂缝自愈合性能[J]. 中国材料进展, 2019,38(4):396-400.
[21] TIAN Jun,WU Xiao-wei,ZHENG Yu,et al. Investigation of Damage Behaviors of ECC-to-concrete Interface and Damage Prediction Model under Salt Freeze-Thaw Cycles[J]. Construction and Building Materials, 2019, 226: 238-249.
[22] YUAN Fang, CHEN Meng-cheng, PAN Jin-long. Experimental Study on Seismic Behaviours of Hybrid FRP-steel-reinforced ECC-concrete Composite Columns[J]. Composites Part B, 2019, 176: 107272.
[23] GAO Shu-ling, ZHAO Xiao-chong, QIAO Jin-li, et al. Study on the Bonding Properties of Engineered Cementitious Composites (ECC) and Existing Concrete Exposed to High Temperature[J]. Construction and Building Materials, 2019, 196: 330-344.
[24] 吕兴栋, 李家正. 面板堆石坝混凝土面板裂缝现状、成因与防裂技术进展[J]. 长江科学院院报, 2021,38(11):127-134.
[25] WANG Lei, ZHANG Guo-xin, WANG Peng-yu, et al. Effects of Fly Ash and Crystalline Additive on Mechanical Properties of Two-graded Roller Compacted Concrete in a High RCC Arch Dam[J]. Construction and Building Materials, 2018, 182: 682-690.
[26] 张 君, 公成旭, 居贤春. 高韧性低收缩纤维增强水泥基复合材料特性及应用[J]. 水利学报, 2011,42(12):1452-1461.
基金
国家自然科学基金项目(52179122,U2040222,52109147);湖北省自然科学基金项目(2022CFD026)