盐溶液对膨润土干燥收缩特性的影响

李靖, 刘清秉, 郑鹏麟

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (7) : 125-131.

PDF(7043 KB)
PDF(7043 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (7) : 125-131. DOI: 10.11988/ckyyb.20220160
岩土工程

盐溶液对膨润土干燥收缩特性的影响

  • 李靖, 刘清秉, 郑鹏麟
作者信息 +

Influence of Salt Solution on Drying Shrinkage Characteristics of Bentonite

  • LI Jing, LIU Qing-bing, ZHENG Peng-ling
Author information +
文章历史 +

摘要

在高放核废料处置库中,作为缓冲回填材料主料,膨润土一方面受到地下水中可溶盐的侵蚀作用,另一方面受核废料衰变产生的热能影响,会发生干燥收缩。以高庙子膨润土为研究对象,以NaCl、CaCl2(浓度为0.5、1.0、2.0 mol/L)盐溶液侵蚀为研究条件,开展恒温干燥收缩试验,分析盐溶液对压实膨润土干燥收缩进程的影响。试验结果表明:盐溶液浓度越高,试样初始饱和含水率越低,残余含水率越高,样品水分蒸发速率越低,且Ca2+对水分蒸发的影响要大于Na+;干燥过程中,压实膨润土表面裂隙呈现出裂隙张开、裂隙维持、裂隙闭合及裂隙稳定4个阶段,盐溶液可以抑制土体开裂,浓度越高,样品表面裂隙率越小。盐溶液作用使膨润土的微结构从分散的黏粒形态向团聚结构转变,从而导致收缩应变减小、收缩各向异性弱化,随着盐溶液浓度和阳离子化合价增大,单位含水率降低诱发的体积收缩应变εvf增大。因此,研究盐溶液作用下膨润土干燥收缩特性,对于合理评估膨润土的工程服役性能具有重要意义。

Abstract

As a major buffering backfill material for high-level radioactive waste disposal repository, bentonite is affected by soluble salts in groundwater and thermal energy generated by nuclear waste decay, leading to drying shrinkage. Studying the drying shrinkage characteristics of bentonite under the influence of salt solutions is crucial to rationally evaluate its engineering performance. Constant-temperature drying shrinkage tests were carried out on bentonite from Gaomiaozi under the exposure of NaCl and CaCl2 solutions with concentrations of 0.5, 1.0 and 2.0 mol/L, respectively. The influence of salt solutions on the drying shrinkage process of compacted bentonite was analyzed. Results show that the higher the salt solution concentration, the lower the initial saturated water content and the higher the residual water content of the sample, indicating a lower water evaporation rate. Meanwhile, the effect of Ca2+ on water evaporation is greater than that of Na+. During the drying process, the surface fissures of compacted bentonite exhibit four stages, namely fissure opening, fissure maintenance, fissure closure, and fissure stability. Salt solutions could inhibit the cracking of soil mass, and the higher the concentration, the smaller the surface crack ratio of the sample. Salt solutions can change the microstructure of bentonite from a dispersed viscous particle form to an aggregated structure, thereby reducing the shrinkage strain and weakening the anisotropy of the shrinkage. As the concentration and cation valence of salt solutions increase, the volume shrinkage strain εvf induced by the decrease of unit water content increases.

关键词

压实膨润土 / 盐溶液 / 水分蒸发 / 干燥收缩 / 裂隙

Key words

compacted bentonite / salt solution / water evaporation / drying shrinkage / fissures

引用本文

导出引用
李靖, 刘清秉, 郑鹏麟. 盐溶液对膨润土干燥收缩特性的影响[J]. 长江科学院院报. 2023, 40(7): 125-131 https://doi.org/10.11988/ckyyb.20220160
LI Jing, LIU Qing-bing, ZHENG Peng-ling. Influence of Salt Solution on Drying Shrinkage Characteristics of Bentonite[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 125-131 https://doi.org/10.11988/ckyyb.20220160
中图分类号: TU443   

参考文献

[1] SUZUKI S, SAZARASHI M, AKIMOTO T, et al. A Study of the Mineralogical Alteration of Bentonite in Saline Water[J]. Applied Clay Science, 2008, 41(3/4): 190-198.
[2] KAUFHOLD S, DOHRMANN R. Stability of Bentonites in Salt Solutions Sodium Chloride[J]. Applied Clay Science, 2009, 45(3): 171-177.
[3] DIXON D, CHANDLER N, GRAHAM J, et al. Two Large-Scale Sealing Tests Conducted at Atomic Energy of Canada's Underground Research Laboratory: The Buffer-Container Experiment and the Isothermal Test[J]. Canadian Geotechnical Journal, 2002, 39(3): 503-518.
[4] KOWALSKI S. Thermomechanics of the Drying Process of fluid-Saturated Porous Media[J]. Drying Technology, 1994, 12: 453-482.
[5] 唐朝生, 崔玉军, Anh-minh Tang, 等. 膨胀土收缩开裂过程及其温度效应[J]. 岩土工程学报, 2012, 34(12): 2181-2187.
[6] 唐朝生, 崔玉军, Anh-Minh Tang, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
[7] CHERTKOV V Y, RAVINA I, ZADOENKO V. An Approach for Estimating the Shrinkage Geometry Factor at a Moisture Content[J]. Soil Science Society of America Journal, 2004, 68(6): 1807-1817.
[8] HAINES W B. The Volume-Changes Associated with Variations of Water Content in Soil[J]. The Journal of Agricultural Science, 1923, 13(3): 296-310.
[9] STIRK G B. Some Aspects of Soil Shrinkage and the Effect of Cracking Upon Water Entry into the Soil[J]. Australian Journal of Agricultural Research, 1954, 5(2): 279.
[10]BOIVIN P, GARNIER P, TESSIER D. Relationship between Clay Content, Clay Type, and Shrinkage Properties of Soil Samples[J]. Soil Science Society of America Journal, 2004, 68(4): 1145-1153.
[11]VERWEY E J W. Theory of the Stability of Lyophobic Colloids[J]. The Journal of Physical and Colloid Chemistry, 1947, 51(3): 631-636.
[12]HUECKEL T A. Water-Mineral Interaction in Hygromechanics of Clays Exposed to Environmental Loads: a Mixture-Theory Approach[J]. Canadian Geotechnical Journal, 1992, 29(6): 1071-1086.
[13]BUTT H-J, FARSHCHI-TABRIZI M, KAPPL M. Using Capillary Forces to Determine the Geometry of Nanocontacts[J]. Journal of Applied Physics, 2006, 100(2): 024312.
[14]刘观仕, 陈永贵, 张贵保, 等. 压实条件对膨胀土裂隙发育影响的试验研究[J]. 长江科学院院报, 2019, 36(11): 91-97.
[15]吕立勇, 项国圣, 葛 磊. 盐溶液对膨润土-砂混合物膨胀性能的影响[J]. 地下空间与工程学报, 2021, 17(6): 1796-1802.
[16]郭招群, 刘俊新, 甘建军, 等. 盐溶液对高庙子钠基膨润土膨胀性能的影响[J]. 西南科技大学学报, 2017, 32(3): 22-26, 102.
[17]李晓月, 徐永福. 盐溶液中膨润土膨胀变形的计算方法[J]. 岩土工程学报, 2019, 41(12): 2353-2359.
[18]BOHN H L, MYER R. A, O'CONNOR G A. Soil Chemistry[M]. New York: John Wiley & Sons, 2002.
[19]ISRAELACHVILI J N.Intermolecular and Surface Forces[M].Edition 3. Burlington,MA:Academic Press,2011.
[20]MUSSO G, ROMERO E, DELLA VECCHIA G. Double-Structure Effects on the Chemo-Hydro-Mechanical Behaviour of a Compacted Active Clay[M]//Bio- and Chemo-Mechanical Processes in Geotechnical Engineering.London: ICE Publishing, 2014: 3-17.
[21]THYAGARAJ T, SALINI U. Effect of Pore Fluid Osmotic Suction on Matric and Total Suctions of Compacted Clay[J]. Géotechnique, 2015, 65(11): 952-960.

基金

国家自然科学基金项目(41972298)

PDF(7043 KB)

Accesses

Citation

Detail

段落导航
相关文章

/