智能全站仪大坝自动化监测时的辅助水位测量

周建国, 彭朵, 蒋卫国, 黎建洲

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (6) : 160-165.

PDF(3677 KB)
PDF(3677 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (6) : 160-165. DOI: 10.11988/ckyyb.20220110
工程安全与灾害防治

智能全站仪大坝自动化监测时的辅助水位测量

  • 周建国1, 彭朵1, 蒋卫国2, 黎建洲3
作者信息 +

Auxiliary Water Level Measurement During Automatic Dam Safety Monitoring with Robotic Total Station

  • ZHOU Jian-guo1, PENG Duo1, JIANG Wei-guo2, LI Jian-zhou3
Author information +
文章历史 +

摘要

库水位是大坝安全监测的重要要素之一,提出了在智能全站仪进行大坝外观自动化监测的同时辅助水位测量的方法。首先将智能全站仪望远镜瞄准坝体水位线位置进行观测,利用三角高程原理计算水位线高程,同时通过其同轴相机拍摄进行人工学习得到水位线直线方程。在周期性监测阶段,基于卡尔曼滤波对库水位的预测结果调整望远镜的竖直角并拍照,进而通过图像处理技术根据直线斜率提取图像水位线,并调整拍摄使其居中再计算水位线高程。试验结果表明,此方法测量水位具有一定的工程应用前景,有助于扩展智能全站仪在大坝安全监测中的用途。

Abstract

The water level of reservoir is a crucial element of dam safety monitoring. This paper presents a method to assist in water level measurement using a robotic total station during its displacement monitoring tasks. Initially, the telescope of the robotic total station is precisely aimed at the water level line, and the elevation of water level is calculated using trigonometric leveling principles. Simultaneously, the initial equation for the water level line is manually obtained by capturing a picture with the coaxial camera. During the periodic monitoring stage, the vertical angle of the telescope is adjusted to capture images of the water level line based on the predicted results from the Kalman filter. Subsequently, a series of image processing techniques are employed to extract the water level line from the picture considering the initial slope of the water level line. Adjustments are made to ensure that the captured image is centered on the water level line, and the elevation of the water level line is calculated. The test results demonstrate that this method has a certain engineering application prospect, and is helpful to expand the use of robotic total station in dam safety monitoring.

关键词

大坝自动化监测 / 水位测量 / 智能全站仪 / 图像处理 / 卡尔曼滤波

Key words

dam safety monitoring / water level measurement / robotic total station / image processing / Kalman filter

引用本文

导出引用
周建国, 彭朵, 蒋卫国, 黎建洲. 智能全站仪大坝自动化监测时的辅助水位测量[J]. 长江科学院院报. 2023, 40(6): 160-165 https://doi.org/10.11988/ckyyb.20220110
ZHOU Jian-guo, PENG Duo, JIANG Wei-guo, LI Jian-zhou. Auxiliary Water Level Measurement During Automatic Dam Safety Monitoring with Robotic Total Station[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(6): 160-165 https://doi.org/10.11988/ckyyb.20220110
中图分类号: P258   

参考文献

[1] 黄 强, 刘 东, 魏晓婷, 等. 中国筑坝数量世界之最原因分析[J]. 水力发电学报, 2021, 40(9): 35-45.
[2] 周心怡, 胡 蕾, 张启灵. 考虑谷幅收缩变形的高拱坝多源信息融合安全评判[J]. 长江科学院院报, 2023, 40(1): 87-93.
[3] 葛山运. 基于GPS/BDS的大坝安全监测试验与分析[J]. 中国农村水利水电, 2020(1): 164-168.
[4] LI B, YANG J, HU D. Dam Monitoring Data Analysis Methods: A Literature Review[J]. Structural Control and Health Monitoring, 2020, 27(3): 1-14.
[5] 江 超,肖传成.我国水库大坝安全监测现状深度剖析与对策研究[J].水利水运工程学报,2021(6):97-102.
[6] 渠守尚, 马 勇. 测量机器人在小浪底大坝外部变形监测中的应用[J]. 测绘通报, 2001(4): 35-37.
[7] 张思洪, 江德军. 高精度地表三维位移自动化监测技术研究与应用[J]. 长江科学院院报, 2021, 38(1)66-71.
[8] 崔 洁. 不同库水位升降速度对大坝边坡稳定性的影响研究[J]. 水利水电技术, 2017, 48(2)155-159.
[9] VORATHIN E,HAFIZI Z M, ISMAIL N,et al. FBG Water-Level Transducer Based on PVC-Cantilever and Rubber-Diaphragm Structure[J]. IEEE Sensors Journal, 2019, 19(17): 7407-7414.
[10]黄 凯,陈渠森,鞠博晓.GNSS自动化监测系统的大坝变形预测方法研究[J].测绘通报,2018(1):147-150.
[11]许 笠, 王延乐, 华小军. 雷达水位计在水情监测系统中的应用研究[J]. 人民长江, 2014, 45(2): 74-77.
[12]彭元松,彭 端.基于ZigBee无线通信技术的河流水位监测系统[J].仪表技术与传感器,2012(7):68-70.
[13]刘铭辉,车国霖,张 衎,等. 一种不定长水尺图像水位测量方法[J].仪器仪表学报,2021,42(7):250-258.
[14]张 振,周 扬,王慧斌,等. 标准双色水尺的图像法水位测量[J]. 仪器仪表学报,2018, 39(9):236-245.
[15]鲍 江, 陶青川, 张 鹏. 基于图像处理的水位线检测算法[J]. 水电能源科学, 2015, 33(4): 96-99, 210.
[16]王 伟, 马福昌. 基于图像处理的水位自动测量技术[J]. 南水北调与水利科技, 2012, 10(6):147-150.
[17]聂 鼎,张 龑,刘 毅,等.基于图像处理的小型水库水位测量方法[J]. 水电能源科学,2019,37(11):28-32.
[18]章后甜, 郑 勇, 陈 冰, 等. 图像全站仪及图像测量发展与展望[J]. 测绘通报, 2021(6): 50-53.
[19]MUGNAI F, CAPOROSSI P, MAZZANTI P. Exploiting Image Assisted Total Station in Digital Image Correlation (DIC) Displacement Measurements: Insights from Laboratory Experiments[J]. European Journal of Remote Sensing, 2022, 55(1): 115-128.
[20]黎建洲, 张金生, 曹 浩, 等. 精密三角高程测量在大藤峡水利枢纽左右岸高程联测中的应用[J]. 长江科学院院报, 2022, 39(1):160-164.
[21]XIN D J, SHI L F. Kalman Filter for Linear Systems with Unknown Structural Parameters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1852-1856.
[22]李军成. 图像边缘检测的分数阶微分算子研究[J]. 计算机应用与软件, 2015, 32(12):206-209, 221.
[23]文永革, 何红洲, 李海洋. 一种改进的Roberts和灰色关联分析的边缘检测算法[J]. 图学学报, 2014, 35(4): 637-642.

基金

国家自然科学基金项目(42101375)

PDF(3677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/