为了探究微生物诱导碳酸钙沉淀(MICP)技术改良膨胀土膨胀特性的效果和作用机理,利用产脲酶菌CGMCC 1.368 7,开展了MICP拌和法处理膨胀土的膨胀特性试验。通过正交试验研究了反应液配比和Ca2+浓度对MICP拌和法处理膨胀土自由膨胀率、无荷膨胀率、CaCO3百分生成量的影响及其变化规律,揭示了MICP改良膨胀土的微观机理。结果表明:经MICP拌和法处理后,膨胀土的膨胀特性得到显著改善;当反应液配比为1∶1、Ca2+浓度为2.0 mol/L时,膨胀土自由膨胀率最大降低了44.4%;当反应液配比为1∶3、Ca2+浓度为2.0 mol/L时,体膨胀率减小了92.2%,膨胀含水率降低了24.9%。MICP技术通过胶结土颗粒、充填土体孔隙和离子置换作用,降低膨胀土颗粒的亲水性,减小土颗粒间的排斥作用,减弱膨胀土的膨胀势。研究成果验证了基于MICP技术拌和法改良膨胀土膨胀特性的可行性。
Abstract
The effectiveness and mechanism of MICP (Microbial Induced Calcium carbonate Precipitation) improving the expansion characteristics of expansive soil were investigated via test of expansive soil mixed with urease-producing bacteria CGMCC 1.368 7. The effects of reaction solution ratio and Ca2+ molar concentration on the free expansion rate, unloaded expansion rate, and percentage generation of CaCO3 of expansive soil treated with MICP were studied by orthogonal experiments, and the microscopic properties of MICP-modified expansive soil were revealed. The swelling characteristics of expansive soil treated with MICP can be improved remarkably: when the ratio of reaction solution is 1∶1 and the concentration of Ca2+ is 2.0 mol/L, the free expansion rate of expansive soil is reduced by 44.4% at most; when the ratio of the reaction solution is 1∶3 and the concentration of Ca2+ is 2.0 mol/L, the volumetric expansion rate is reduced by 92.2%, and the expansion moisture content is reduced by 24.9%. MICP technology reduces the hydrophilicity of expansive soil particles, hinders the repulsion between soil particles, and weakens the expansion potential of expansive soil by cementing soil particles, filling soil pores and ion replacement. The research results verify the feasibility of improving the swelling properties of expansive soil by mixing based on MICP technology.
关键词
膨胀土 /
自由膨胀率 /
无荷膨胀率 /
MICP /
微观分析
Key words
expansive soil /
free swelling rate /
unloaded swelling rate /
MICP /
microanalysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谭罗荣, 孔令伟. 特殊岩土工程土质学[M]. 北京:科学出版社, 2006.
[2] 程展林, 龚壁卫. 膨胀土边坡[M]. 北京:科学出版社, 2015.
[3] 张伟利. 化学法改良膨胀土的试验研究[D]. 杨凌:西北农林科技大学, 2014.
[4] 何 稼, 楚 剑, 刘汉龙, 等. 岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
[5] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial Carbonate Precipitation as a Soil Improvement Technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
[6] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quabtifying Bio-mediated Groung Improvement by Ureolysis: A Large Scale Biogrout Experiment[J]. Joural of Geotechnical and Geoenvironment Engineering, 2010, 136: 1721-1728.
[7] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated Soil Improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
[8] 程晓辉, 麻 强, 杨 钻, 等. 微生物灌浆加固液化砂土地 基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
[9] JIANG N,SOGA K,DAWOUD O. Experimental Study of the Mitigation of Soil Internal Erosion by Microbially Induced Calcite Precipitation[C]//Proceedings of Geo-congress 2014: Geo-characterization and Modeling for Sustainability. Atlanta, Georgia. February 23-26,2014:1586-1595.
[10] 邵光辉, 尤 婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 129-135.
[11] 彭 劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740.
[12] 张银峰, 万晓红, 李 娜, 等. 微生物加固黏土的影响因素与机理分析[J]. 中国水利水电科学研究院学报, 2021, 19(2): 246-254.
[13] 王子文, 魏 然, 蔡 红, 等. 营养液浓度和微生物活性对MICP固化淤泥质土强度的影响[J]. 中国水利水电科学研究院学报, 2020, 18(6): 486-493.
[14] 覃永富, 卢 望, 袁梦祥, 等. 巨大芽孢杆菌改良邯郸强膨胀土试验研究[J]. 西南师范大学学报(自然科学版), 2020, 45(8): 87-95.
[15] 余 梦,张家铭,周 杨,等.MICP技术改性膨胀土实验研究[J]. 长江科学院院报,2021,38(5):103-108.
[16] 李小冰. 微生物改良膨胀土的微观结构和力学特性研究[D]. 长沙:中南林业科技大学, 2021.
[17] GB/T 50123—2019, 土工试验方法标准[S]. 北京:中国计划出版社, 2019.
[18] QABANY A A, SOGA K, SANTAMARINA C. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation[J]. Journal of Geotechnical & Geo-environmental Engineering, 2011, 138(8): 992-1001.
[19] 赵春吉. 水泥改性强膨胀土的试验及改性机理研究[D]. 大连:大连理工大学, 2014.
[20] 张家俊, 龚壁卫, 胡 波, 等. 干湿循环作用下膨胀土裂隙演化规律试验研究[J]. 岩土力学, 2011, 32(9): 2729-2734.
[21] 丁振洲, 郑颖人, 李利晟. 膨胀力变化规律试验研究[J]. 岩土力学, 2007,36(7): 1328-1332.
[22] 王瑞兴,钱春香,王剑云.微生物沉积碳酸钙研究[J]. 东南大学学报(自然科学版),2005,35(增刊1):191-195.
基金
国家重点研发计划项目(2017YFC1501201);安徽省引江济淮集团有限公司科技项目(YJJH-ZT-ZX-20191031216)