第三系泥岩隧洞围岩大变形成因及应对措施

池建军, 刘登学, 丁秀丽, 黄书岭

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (10) : 88-96.

PDF(18423 KB)
PDF(18423 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (10) : 88-96. DOI: 10.11988/ckyyb.20211286
岩土工程

第三系泥岩隧洞围岩大变形成因及应对措施

  • 池建军1, 刘登学2, 丁秀丽2, 黄书岭2
作者信息 +

Causes and Countermeasures of Large Deformation in a Tunnel with Tertiary Mudstone

  • CHI Jian-jun1, LIU Deng-xue2 , DING Xiu-li2, HUANG Shu-ling2
Author information +
文章历史 +

摘要

围岩大变形是软岩隧洞建设中危及隧洞施工及长期安全的重大工程灾害之一。结合第三系泥岩隧洞出现的显著围岩大变形及支护结构破坏等现象的工程现场调查,通过开展围岩监测、室内试验及数值模拟等工作,获得了第三系泥岩隧洞围岩大变形的主要成因和发生机理。研究表明:触发该隧洞围岩大变形的主要因素是低岩石强度条件下隧洞开挖卸荷引起的塑性变形以及地下水对围岩的软化作用,围岩挤压膨胀变形和不同岩层间的非一致变形共同主导了支护结构的破坏;围岩大变形的发生机理主要体现在第三系泥岩洞段横穿一条常年流水的冲沟,加之隧洞中部透水性良好的砂砾岩层,使得隧洞开挖后围岩含水率显著增加,第三系泥岩遇水泥化、软化,强度显著降低并呈现出一定的膨胀性,最终促使围岩产生显著的大变形。在此认识的基础上,提出了提高钢拱架型号、增强钢拱架之间的纵向连接、增设底拱外八字锁脚锚管、施加初期支护与二次衬砌之间的聚乙烯缓释消能层等应对措施,实施后的现场监测结果表明,所提出的控制措施有效解决了第三系泥岩洞段开挖过程中的软岩大变形难题。

Abstract

Large deformation of surrounding rock is one of the major engineering disasters endangering tunnel construction and long-term safety in soft rock tunnel construction.In association with engineering field investigation of significant large deformation and support structure damage,we obtained the main causes and occurrence mechanism of large deformation in the Tertiary mudstone tunnel via deformation monitoring,indoor test and numerical simulation.Results revealed that the plastic deformation caused by tunnel excavation under the condition of low rock strength and the softening effect of groundwater on surrounding rock were major factors triggering the large deformation in the tunnel.The squeezing and expansive deformation of surrounding rock and the inconsistent deformation between different rock strata jointly dominated the failure of the support structure.The Tertiary mudstone tunnel crosses a gully with perennial water flow,coupled with the sand gravel layer with good water permeability in the middle of the tunnel,which significantly increased the water content of surrounding rock after tunnel excavation.The argillization and softening of the Tertiary mudstone led to strength reduction and expansion,which finally resulted in the large deformation of surrounding rock.On this basis,we put forward such countermeasures as improving the steel arch frame,strengthening the longitudinal connection between steel arch frames,adding foot lock anchor pipe of bottom arch,and applying polyethylene slow-release energy dissipation layer between primary support and secondary lining.Field monitoring results demonstrated that the proposed control measures effectively solved the problem of large deformation during the excavation of the Tertiary mudstone tunnel.

关键词

隧洞 / 第三系泥岩 / 大变形 / 成因分析 / 控制措施

Key words

tunnel / the Tertiary mudstone / large deformation / cause analysis / control measures

引用本文

导出引用
池建军, 刘登学, 丁秀丽, 黄书岭. 第三系泥岩隧洞围岩大变形成因及应对措施[J]. 长江科学院院报. 2022, 39(10): 88-96 https://doi.org/10.11988/ckyyb.20211286
CHI Jian-jun, LIU Deng-xue , DING Xiu-li, HUANG Shu-ling. Causes and Countermeasures of Large Deformation in a Tunnel with Tertiary Mudstone[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(10): 88-96 https://doi.org/10.11988/ckyyb.20211286
中图分类号: U45   

参考文献

[1] 马 栋,孙 毅,王武现,等.高地应力软岩隧道大变形控制关键技术[J].隧道建设(中英文),2021,41(10):1634-1643.
[2] YASSAGHI A,SALARI-RAD H.Squeezing Rock Conditions at an Igneous Contact Zone in the Taloun Tunnels,Tehran-Shomal Freeway,Iran:A Case Study[J].International Journal of Rock Mechanics and Mining Sciences,2004,42(1):95-108.
[3] WANG Ming-yang,ZHANG Ning,LI Jie,et al.Computational Method of Large Deformation and Its Application in Deep Mining Tunnel[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2015,50:47-53.
[4] AYDAN Ö,AKAGI T,KAWAMOTO T.The Squeezing Potential of Rock around Tunnels:Theory and Prediction with Examples Taken from Japan[J].Rock Mechanics and Rock Engineering,1996,29(3):125-143.
[5] HOEK E.Big Tunnels in Bad Rock[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(9):1-15.
[6] 袁 东,胡胜刚,李玉婕.弱膨胀性泥岩地区小型引水隧洞病害分析及加固[J].长江科学院院报,2017,34(11):44-47,60.
[7] 张献伟,洪开荣,常 翔,等.第三系泥岩工程特性与仰拱施工技术研究[J].现代隧道技术,2021,58(2):214-219.
[8] 李 宁,刘 波,吕 高.泥岩隧洞围岩渐进性变形与破坏机制探索[J].岩石力学与工程学报,2014,33(增刊1):3087-3092.
[9] 李 磊,谭忠盛.挤压性破碎软岩隧道大变形特征及机制研究[J].岩石力学与工程学报,2018,37(增刊1):3593-3603.
[10] 来弘鹏,杨万精,谢永利.软岩大变形偏压公路隧道变形与荷载作用特征[J].中南大学学报(自然科学版),2014,45(6):1924-1931.
[11] WOOD A M M.Tunnels for Roadsand Motorways[J].Quarterly Journal of Engineering Geology & Hydrogeology,1972,5(1/2):111-126.
[12] BARLA G.SqueezingRocks in Tunnels[J].ISRM News,1995(3/4):44-49.
[13] AYDAN O,AKAGI T,KAWAMOTO T.The Squeezing Potentialof Rocks around Tunnels:Theory and Prediction[J].Rock Mechanics and Rock Engineering,1993,26(2):137-163.
[14] GB 50021—2001,岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.
[15] 何满潮,袁 越,王晓雷,等.新疆中生代复合型软岩大变形控制技术及其应用[J].岩石力学与工程学报,2013,32(3):433-441.
[16] 李术才,徐 飞,李利平,等.隧道工程大变形研究现状、问题与对策及新型支护体系应用介绍[J].岩石力学与工程学报,2016,35(7):1366-1376.
[17] 郑朋强,陈卫忠,谭贤君,等.软岩大变形巷道底臌破坏机制与支护技术研究[J].岩石力学与工程学报,2015,34(增刊1):3143-3150.
[18] 戴永浩,陈卫忠,田洪铭,等.大梁隧道软岩大变形及其支护方案研究[J].岩石力学与工程学报,2015,34(增刊2):4149-4156.
[19] 刘登学,池建军,丁秀丽,等.某输水隧洞衬砌开裂机理与防治措施探讨[J].现代隧道技术,2020,57(增刊1):852-858.
[20] WANG T T,HUANG T H.An Experience of Tunnelling in Mudstone Area in Southwestern Taiwan[J].Tunnelling and Underground Space Technology,2002,17(4):425-436.

基金

国家自然科学基金项目(51979008,51809014);中央级公益性科研院所基本科研业务费项目(CKSF2021715/YT,CKSF2021457/YT,CKSF2021458/YT)

PDF(18423 KB)

Accesses

Citation

Detail

段落导航
相关文章

/