为了增强水泥砂浆材料的强度和变形性能,同时提高矿产资源利用率,将矿渣纤维掺入水泥砂浆进行改性。通过开展无侧限压缩试验,研究了矿渣纤维的掺量和长度效应对水泥砂浆强度与变形特性的影响规律。结果表明:随着矿渣纤维掺量的增加,水泥砂浆的无侧限抗压强度呈增长趋势,但增长幅度在掺量超过0.3%后明显降低;采用5 mm和10 mm两种长度的矿渣纤维进行水泥砂浆改性,在相同掺量条件下,长纤维对水泥砂浆强度的提升幅度约为短纤维的1.3~1.5倍;经过微观形态观察,一定掺量的矿渣纤维与水泥砂浆混合后,骨料颗粒间的黏结程度增强,形成了纤维的桥接效应,进而提高了水泥砂浆的强度和延性指标。
Abstract
Cement mortar was reinforced by mixing with blast furnace slag fiber to enhance the mechanical properties of cement mortar materials and improve the utilization rate of mineral resources. The effects of the content and length of furnace slag fibers on the strength characteristics of reinforced mortar specimens were studied via unconfined compression tests. The results manifest that with the increase of slag fiber content, the unconfined strength of cemental mortar improves; but such improvement attenuates notably when the slag fiber content exceeds 0.3%. Furthermore, slag fibers with lengths of 5 mm and 10 mm were mixed for comparison. Given the same fiber content, long fiber generates a strengthening effect 1.3-1.5 times that of short fiber. Microscopic morphology observation demonstrates that the addition of furnace slag fibers to cement mortar can improve the adhesion between particles, forming a “bridging effect”, thus finally enhancing the strength and toughness of cement mortar.
关键词
矿渣纤维 /
水泥砂浆 /
无侧限压缩试验 /
强度 /
微观形态
Key words
slag fiber /
cement mortar /
unconfined compression test /
strength /
microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 敏, 马倩敏, 郭荣鑫, 等. 磷渣-水泥复合及碱磷渣胶凝材料力学性能实验研究[J]. 硅酸盐通报, 2020, 39(2): 376-382, 401.
[2] ZHANG Z, WANG Q, YANG J. Hydration Mechanisms of Composite Binders Containing Phosphorus Slag at Different Temperatures[J]. Construction and Building Materials, 2017, 147: 720-732.
[3] WANG Y J, XU F L, CHEN J. Influence of Ground Phosphorous Slag Powder on Performance of Cement Mortar[J]. Applied Mechanics and Materials, 2013, 395/396: 463-468.
[4] 陈 硕, 王立久. 活性MgO改性流化床炉底渣-硅灰复合材料的力学性能及产物[J]. 复合材料学报, 2018, 35(5): 1288-1297.
[5] RANJBAR N, ZHANG M. Fiber-reinforced Geopolymer Composites: A Review[J]. Cement and Concrete Composites, 2020, 107: 103498.
[6] 唐续龙, 邢修君. 高炉渣和粉煤灰制备矿渣纤维试验研究[J]. 环境工程, 2020, 38(11): 180-186.
[7] 邵光辉, 黄容聘. 电场改善微生物水泥胶结砂均匀性[J]. 硅酸盐学报, 2018, 46(11): 1575-1583.
[8] GUNEYISI E, ATEWI Y R, HASAN M F. Fresh and Rheological Properties of Glass Fiber Reinforced Self-Compacting Concrete with Nanosilica and Fly Ash Blended[J]. Construction and Building Materials, 2019, 211: 349-362.
[9] WANG Y, WANG Y, ZHANG M. Effect of Sand Content on Engineering Properties of Fly Ash-Slag Based Strain Hardening Geopolymer Composites[J]. Journal of Building Engineering, 2021, 34: 101951.
[10] 周小斌, 江朝华, 张伟伟, 等. 非晶合金纤维增强水泥砂浆性能试验研究[J]. 长江科学院院报, 2017, 34(5): 120-124.
[11] 何国平, 蔡天德, 陈 双, 等. 土质固化剂对水泥土力学特性的影响及机理研究[J]. 中国测试, 2021, 47(6): 63-67.
[12] ABIOGHLI H, HAMIDI A. A Constitutive Model for Evaluation of Mechanical Behavior of Fiber-reinforced Cemented Sand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2): 349-360.
[13] MALIDARREH N R, SHOOSHPASHA I, MIRHOSSEINI S M, et al. Effects of Reinforcement on Mechanical Behaviour of Cement Treated Sand Using Direct Shear and Triaxial Tests[J]. International Journal of Geotechnical Engineering, 2018, 12(5): 491-499.
[14] CHOOBBASTI A J, SAMAKOOSH M A, KUTANAEI S S. Mechanical Properties Soil Stabilized with Nano Calcium Carbonate and Reinforced with Carpet Waste Fibers[J]. Construction and Building Materials, 2019, 211: 1094-1104.
基金
国网河北省电力有限公司科技项目(kj2017-026)