湿陷性是安哥拉红砂的典型工程特性,研究其影响因素对红砂地区岩土工程勘察评价具有重要意义。基于安哥拉红砂原状土与重塑土的室内压缩试验,探讨了压力、含水率、结构性、干密度和细粒土含量对红砂湿陷性的影响规律。试验结果表明:试验压力>100 kPa时,红砂重塑样湿陷系数约是原状土的2.0倍;红砂湿陷系数与试验压力和细粒土含量呈正相关关系,随压力和细粒土含量增加而增加但存在峰值压力和峰值细粒土含量,峰值压力为300 kPa,峰值细粒土含量为60%~80%;红砂湿陷系数与干密度和含水率整体上呈反比关系,原状红砂湿陷性消除和完全丧失的界限含水率分别为9%和13%;重塑土湿陷性消除和完全丧失的界限含水率分别为11%和13%,界限干密度分别为1.80 g/cm3和1.90 g/cm3,对应的压实系数分别为0.92和0.97。湿陷性红砂地区工程建设可通过提高干密度消除其湿陷性。
Abstract
Collapsibility is a typical engineering characteristic of Angola red sand. It is of great significance to study its influencing factors for geotechnical investigation and evaluation in red sand area. Based on laboratory compression tests of undisturbed and remolded Angola red sand specimens, the effects of structure, pressure, moisture content, dry density and fine-grained soil content on the collapsibility of Angola red sand were examined. Test results show that when the pressure is larger than 100 kPa, the collapsibility of remolded red sand is 2.0 times that of the undisturbed red sand. The collapsibility coefficient of red sand has a positive correlation, i.e. to increase with increasing test pressure and fine-grained soil content, with peaking pressure and fine-grained soil content reaching 300 kPa and 60%-80%, respectively. Contrarily, the collapsibility coefficient of red sand is, in general, negatively correlated with dry density and water content. The critical moisture content for eliminating and completely losing the collapsibility of undisturbed red sand is 9% and 13%, respectively, and those of remolded soil 11% and 13% respectively. The critical dry density of remolded soil is 1.80 g/cm3 and 1.90 g/cm3 respectively, and the corresponding compaction coefficient is 0.92 and 0.97 respectively. For engineering construction, the collapsibility of red sand can be eliminated by increasing dry density.
关键词
红砂 /
湿陷性 /
影响因素 /
物理指标 /
安哥拉
Key words
red sand /
collapsibility /
influencing factors /
physical indexes /
Angola
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PUTIGNANOM L, VALENTE A, NETO A B. Carta Geológica de Luanda (1∶25 000)[M]. Luanda: Direco Provincial dos Servios de Geologia e Minas, 2000.
[2] HORTA DA SILVA J A,GOMES TEIXEIRA J A P. Carta Geotécnica da Regio de Luanda-1. Aproximacao[J]. Técnicae Economia Ultramarinas,1973,11(2):91-100.
[3] 刘争宏, 廖燕宏, 张玉守. 罗安达砂物理力学性质初 探[J]. 岩土力学, 2010, 31(增刊 1): 121-126.
[4] 彭友君, 岳 栋, 彭 博, 等. 安哥拉格埃路砂地层的承载力研究[J]. 岩土力学, 2014, 35(增刊 2): 332-337.
[5] 于永堂, 郑建国, 刘争宏. 安哥拉 Quelo 砂抗剪强度特性试验研究[J]. 岩土力学, 2012, 33(增刊1): 136-140.
[6] 刘争宏, 于永堂, 唐国艺, 等. 安哥拉 Quelo砂场地渗透特性试验研究[J]. 岩土力学, 2017, 38(增刊 2): 177-182.
[7] 刘争宏, 王华山, 周远强, 等. 安哥拉 Quelo 砂场地非饱和渗流试验与计算[J]. 水文地质工程地质, 2018, 45(4): 79-85.
[8] 唐国艺, 唐立军, 刘 智, 等. 安哥拉罗安达湿陷性砂的载荷试验研究[J]. 水文地质工程地质, 2018, 45(5): 108-113.
[9] 刘 智,祝伯学,唐国艺,等.安哥拉Quelo砂强夯法处理地基承载力试验研究[J].工程勘察,2018(12):16-20.
[10] 唐国艺,刘 智,刘争宏,等. 低能级强夯在安哥拉Quelo砂中的应用[J]. 岩土力学,2019,40(增刊1):203-209.
[11] 邵生俊,杨春鸣,马秀婷,等. 黄土的独立物性指标及其与湿陷性参数的相关性分析[J].岩土力学,2013,34(增刊2) : 27-34.
[12] 付 宇. 黄土湿陷性与物理指标相关性研究[D]. 北京:中国地质大学(北京), 2016.
[13] 武小鹏,赵永虎,徐安花,等. 黄土湿陷性与其物理力学指标的关系及评价方法[J]. 长江科学院院报, 2018, 35(6): 75-80.
[14] 崔靖俞,张吾渝,解邦龙,等. 西宁地区不同深度原状黄土湿陷性及微观机理研究[J]. 岩土工程学报, 2019, 41(增刊2): 249-252.
[15] 张苏民, 郑建国. 湿陷性黄土(Q3)的增湿变形特征[J].岩土工程学报, 1990, 12(4): 21-31.
[16] 张 炜,张苏民. 我国黄土工程性质研究的发展[J]. 岩土工程学报, 1995, 17 (6): 80-88.
[17] GBT 50123—2019,土工试验方法标准[S].北京:中国计划出版社, 2019.
[18] GB 50025—2018,湿陷性黄土地区建筑标准[S].北京:中国建筑工业出版社,2018.
基金
陕西省创新能力支撑计划项目(2022KJXX-05,2023-CX-TD-34,2023-CX-PT-46);中国机械工业集团青年基金项目(2022-PY-01,2022-ZD-01);西安市英才计划青年项目(2022XAYC-03);中国机械设备进工程股份有限公司科技孵化项目(CMEC-KJFH-2018-02)