渗流管涌是堤防最常见的破坏形式之一,高水位期准确探明渗漏通道分布对堤防除险加固意义重大。利用渗漏水良导电性,提出通过向漏水口供人工电流,观测渗漏通道导电回路产生的一次感应微弱磁场能量查找渗漏通道的方法,称为渗漏通道弱磁探测法。基于室内物性参数试验和正演计算,分析堤防土体导电性随含水率的变化趋势,揭示不同形态渗漏通道的弱磁场空间分布特征;系统总结弱磁场强度、电流密度随渗漏通道埋深、电导率的变化规律。物理模型试验结果表明弱磁探测法能有效查明渗漏通道的空间分布形态,具有效率高、无接地电极、抗干扰性强等优势。该技术将对促进堤防渗漏隐患探测技术的发展具有重要科学意义和实用价值。
Abstract
Seepage piping is a most common failure mode of dike. Accurate detection of dike piping channels during high water level is of great significance to the reinforcement of dike. We propose a method to identify seepage channel by providing artificial current to the seepage opening and observing the primary induced weak magnetic field energy generated by the conductive circuit of the seepage channel. Based on laboratory physical parameter test and forward simulation calculation, we looked into the variation trend of electrical conductivity of embankment soil with water content, and revealed the spatial distribution characteristics of weak magnetic field in different seepage channels. We further summarized the variation law of weak magnetic field intensity and current density with the depth and conductivity of leakage channel. The results of physical model test show that the weak magnetic detection method effectively identifies the spatial distribution of seepage channels. It is highly efficient and has strong anti-interference capability with no grounding electrode. It is expected to offer pragmatic value for promoting the detection technology of hidden seepage danger in dike.
关键词
堤防隐患 /
渗漏通道 /
弱磁探测技术 /
弱磁场特征 /
一次感应磁场
Key words
hidden danger of dike /
seepage channel /
weak magnetic detection technology /
weak magnetic field characteristics /
primary induced magnetic field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邬爱清,周华敏,吴庆华. 欧美国家堤防防洪若干特点及与我国的比较[J].长江科学院院报,2019,36(10):11-18.
[2] 周华敏,肖国强,周黎明,等. 堤防隐患物探技术研究现状与展望[J]. 长江科学院院报,2019,36(12):164-168.
[3] 郑灿堂. 应用自然电场法检测土坝渗漏隐患的技术[J]. 地球物理学进展, 2005, 20(3): 854-858.
[4] 房纯纲, 葛怀光, 鲁 英,等. 堤防渗漏隐患探测用瞬变电磁仪[J]. 水电与抽水蓄能, 2002, 26(5): 38-41.
[5] 邓中俊. 矩形小回线源三维瞬变电磁场响应特征及堤坝渗漏探测研究[D]. 北京: 中国地质大学(北京), 2015.
[6] 何继善. 堤防渗漏管涌“流场法”探测技术[J]. 铜业工程, 2000(1): 5-8.
[7] 邹声杰. 堤坝管涌渗漏流场拟合法理论及应用研究[D]. 长沙: 中南大学, 2009.
[8] SJÖDAHL P, DAHLIN T, JOHANSSON S, et al. Resistivity Monitoring for Leakage and Internal Erosion Detection at Hllby Embankment Dam[J]. Journal of Applied Geophysics, 2008, 65(3/4): 155-164.
[9] CHO I-K, YEOM J-Y. Crossline Resistivity Tomography for the Delineation of Anomalous Seepage Pathways in an Embankment Dam[J]. Geophysics, 2007, 72(2): G31-G38.
[10] 陈建生, 杜国平. 同位素示踪技术在水库大坝渗漏探测中的应用[J]. 核农学通报, 1992, 13(5): 222-224.
[11] 王 宏, 牛兆伟, 张国栋, 等. 地面核磁共振方法在大坝安全检测中的试验研究[J]. CT理论与应用研究, 2015, 24(3): 367-376.
[12] 刘润泽, 张建清, 陈 勇, 等. 堤防隐患的时间推移地球物理监测探讨[J]. 三峡大学学报(自然科学版), 2013, 35(6): 20-23.
[13] JAKOSKY J J. Method and Apparatus for Determining Underground Structure: US1906271[P]. 1933-05-02.
[14] EDWARDS R N. The Magnetometric Resistivity Method and Its Application to the Mapping of a Fault[J]. Canadian Journal of Earth Sciences, 1974, 11(8): 1136-1156.
[15] EDWARDS R N, LEE H, NABIGHIAN M N. On the Theory of Magnetometric Resistivity (MMR) Methods[J]. Geophysics, 1978, 43(6): 1176-1203.
[16] GOLDMAN M, NEUBAUER F M. Groundwater Exploration Using Integrated Geophysical Techniques[J]. Surveys in Geophysics, 1994, 15(3): 331-361.
[17] KULESSA B, JAEKEL U, KEMNA A, et al. Magnetometric Resistivity (MMR) Imaging of Subsurface Solute Flow: Inversion Framework and Laboratory Tests[J]. Journal of Environmental and Engineering Geophysics, 2002, 7(3): 111-118.
[18] KOFOED V O, JESSOP M L, WALLACE M J, et al. Unique Applications of MMR to Track Preferential Groundwater Flow Paths in Dams, Mines, Environmental Sites, and Leach Fields[J]. The Leading Edge, 2011, 30(2): 192-204.
[19] KOFOED V. Making Accurate Groundwater Flow Models[J]. Pollution Engineering, 2013, 45(11): 22-26.
[20] MAXWELL M, ESO R, OLDENBURG D. Using 2D and 3D Electrical Resistivity and Magnetometric Resistivity Techniques for Investigating Dam and Dike Soil Conditions for Leak Detection—Field Examples and Forward Modelling[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013. Denver, Colorado. Environment and Engineering Geophysical Society, 2013: 821.
[21] 傅良魁. 磁激发极化法探矿理论的几个问题[J]. 地球物理学报, 1979, 22(2): 156-168.
[22] 杨建文, 任怀宗, 雷林源. 起伏地形条件下磁电阻率法的资料处理方法[J]. 中南矿冶学院学报, 1991, 22(1): 1-8.
[23] 邓靖武. 磁电法正演理论研究[D]. 北京: 中国地质大学(北京), 2005.
[24] 翁爱华, 刘云鹤, 高丽娟, 等. 天然气水合物的磁电阻率响应特征[J]. 石油地球物理勘探, 2009, 44(增刊1): 158-161.
[25] ZHU K,YANG J.Time-Dependent Magnetometric Resistivity Anomalies of Groundwater Contamination: Synthetic Results from Computational Hydro-Geophysical Modeling[J]. Applied Geophysics, 2008, 5(4): 322-330.
[26] 李斯睿. 地面磁电阻率法三维非线性反演研究[D]. 长春: 吉林大学, 2017.
[27] 林品荣,郭 鹏,石福升,等.大深度多功能电磁探测技术研究[J].地球学报,2010,31(2):149-154.
基金
国家重点研发计划项目(2017YFC1502600);国家自然科学基金青年基金项目(41702321)