含水层富水性分区是合理开发地下水资源的重要前提。为了解决传统富水性评价中过分依赖水文地质钻探资料以及影响因素的不确定性问题,以内蒙古荒漠草原典型煤矿为研究区,通过分析含水层富水性影响因素,结合大地电磁测深成果(MT)建立指标体系与分级标准。基于未确知测度理论的优势,利用模糊层次分析法与熵权法(FAHP-EW)组合确定指标权重,建立含水层富水性综合评价模型,并对研究区含水层富水性分区进行评价,借助地理信息系统(GIS)的空间信息融合功能将评价结果可视化。最后采用地面核磁共振(SNMR)技术验证评价结果的准确性。结果表明该方法对研究区富水性分区评价较为合理,证明该评价方法具有一定的有效性和实用性,可为荒漠草原含水层富水性评价提供方法借鉴。
Abstract
Zoning of the water-richness of aquifer is an important prerequisite for the rational development of groundwater resources.To address the over-reliance on hydrogeological drilling data and the uncertainty of influencing factors in traditional water-richness evaluation,an indicator system and its corresponding grading standard were established via analyses on the influence factors of water-richness in association with magnetotelluric sounding results.The typical mining area of desert steppe in Inner Mongolia was taken as the research area.Based on the advantages of unascertained measurement theory,the index weights were determined by combining fuzzy analytic hierarchy process (FAHP) and entropy weight (EW).A comprehensive evaluation model of aquifer's water-richness was built.The evaluation results were further visualized with the help of GIS spatial information fusion function.Finally,the accuracy of the evaluation results was verified by surface nuclear magnetic resonance (SNMR).The results demonstrated the rationality,effectiveness and practicality of the present evaluation method,which offers a reference for evaluating the water-richness of aquifer in desert steppe.
关键词
含水层 /
富水性评价 /
未确知测度理论 /
模糊层次分析法 /
熵权法 /
连续电导率剖面仪 /
地面核磁共振
Key words
aquifer /
water-richness evaluation /
uncertainty measurement /
FAHP /
EW /
EH4 /
SNMR
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 兰圣涛,周 宏,曾圆梦,等.基于模糊综合评判法的岩溶地区地层含水性评价:以三峡地区寒武系地层为例[J].安全与环境工程,2021,28(2):133-141.
[2] DAI G S,ULGIATI S,ZHANG Y S,et al.The False Promises of Coal Exploitation:How Mining Affects Herdsmen Well-being in the Grassland Ecosystems of Inner Mongolia[J].Energy Policy,2014,67:146-153.
[3] MA L Q,CAO X Q,LIU Q,et al.Simulation Study on Water-preserved Mining in Multi-excavation Disturbed Zone Inclose Distance Seams[J].Environmental Engineering and Management Journal,2013,12(9):1849-1853.
[4] 刘 基,杨 建,王强民,等.蒙陕接壤区采煤对白垩系水资源的影响研究[J].干旱区资源与环境,2018,32(6):92-98.
[5] 武 强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法:富水性指数法[J].煤炭学报,2011,36(7):1124-1128.
[6] 韩 超,泮晓华,李国梁,等.基于GIS多源信息集成的含水层富水性模糊层次分析法[J].水文地质工程地质,2012,39(4):19-25.
[7] WU Q,LIU Y,LIU D,et al.Prediction of Floor Water Inrush:The Application of GIS-based AHP Vulnerable Index Method to Donghuantuo Coal Mine,China[J].Rock Mechanics and Rock Engineering,2011,44(5):591-600.
[8] 郭启琛,李文平,郭太刚.基于FAHP-GRA法的风积沙覆盖风化带潜水富水性评价[J].煤矿安全,2018,49(12):35-40.
[9] 黄 磊,高瑞忠,李喜安,等.基于AHP法与SNMR信息融合的含水层富水性评价方法[J].水文,2018,38(1):35-40.
[10] 常 亮,解建仓.应用优化神经网络算法预报地下水位[J].水利水运工程学报,2005(4):66-70.
[11] 曾佳龙,刘 琼,黄 锐,等.基于未确知测度理论的薄基岩厚松散含水层下煤层安全开采区域划定[J].采矿与安全工程学报,2015,32(6):898-904.
[12] 单 博,陈剑平,王 清.基于最小熵理论和未确知测度理论的泥石流敏感性分析[J].岩土力学,2014,35(5):1445-1454.
[13] 王光远.未确知性信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(41):52.
[14] 潘国营,杜鹏卓,陈国胜.基于EW-FAHP的煤层底板承压水突水危险评价[J].水文地质工程地质,2017,44(1):131-136.
[15] PING Z,GUO Q F.Application of Fuzzy Comprehensive Evaluation to Evaluate the Effect of Water Flooding Development[J].Journal of Petroleum Exploration and Production Technology,2018,8(4):1455-1463.
[16] 程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997(1):14-22.
[17] 杨 剑,王永华,焦彦杰,等.EH4电磁系统在西南抗旱救灾找水中的应用[J].物探与化探,2011,35(6):754-757.
[18] 邱 梅,施龙青,滕 超,等.基于灰色关联-FDAHP法与物探成果相结合的奥灰富水性评价[J].岩石力学与工程学报,2016,35(增刊1):3203-3213.
[19] 潘剑伟,占嘉诚,洪 涛,等.地面核磁共振方法和高密度电阻率法联合找水[J].地质科技情报,2018,37(3):253-262.
[20] PAN J,LI Z,ZHANG Y,et al.Correlating Intensity of Pulse Moment with Exploration Depth in Surface NMR[J].Journal of Applied Geophsics,2017,142:1-13.
[21] 赖光东,周维博,姚炳光.西安地区浅层承压水水源热泵适宜性评价[J].长江科学院院报,2017,34(12):22-27.
[22] 黄 磊.内蒙古锡林河子流域浅层水文地质结构辨识及采煤疏干影响研究[D].西安:长安大学,2018.
[23] 范丹丹,陈 群,亓立成,等.由抽水试验计算砂卵石含水层渗透系数的方法对比[J].水利水运工程学报,2021(4):54-60.
[24] 李 博,王先庆,彭雄武.信息融合型页岩气开采区含水层富水性预测:以凤冈区块为例[J].长江科学院院报,2020,37(3):32-36.
基金
国家自然科学基金项目(51969023);内蒙古自治区科技计划项目(2020GG0076,2019GG141)