水闸属于薄壁大体积混凝土结构,实践表明,若不采取温控措施,尤其是低温季节施工的混凝土水闸结构在浇筑初期极易出现表面裂缝,后期易扩展为贯穿性裂缝。弄清各温控措施对水闸温度场、应力场及开裂风险的影响,是制定水闸温控指标和防裂措施的前提。以某在建的低温季节浇筑水闸工程为研究对象,利用三维有限元法,计算分析了在低温季节浇筑施工时水闸结构的温度场、应力场特性,重点进行了开裂风险的敏感性分析。结果表明,单一温控措施的防裂效果有限,控温浇筑、表面保温、冷却通水必须相互协调,能有效控制水闸温度应力并避免裂缝产生。
Abstract
Sluice is a large-volume concrete structure with thin walls. Practice have shown that concrete sluice structure constructed in low-temperature season is subjected to surface cracks in the early stage of pouring if no temperature control measure is taken, and such surface cracks would penetrate through in later stage. To clarify the influence of temperature control measures on the temperature field, stress field and cracking risk of the sluice is the prerequisite of determining temperature control indices and formulating anti-cracking measures. With a sluice project under construction in low-temperature season as a case study, we examined the spatial and temporal characteristics of temperature field and stress field by simulating the construction process using 3D finite element method. On this basis, we analyzed the sensitivities of stress to pouring temperature, surface temperature preservation, and water cooling. Results manifested that single measure has limited effect. Multiple measures including temperature-control pouring, surface temperature preservation, and water cooling must be coordinated to effectively control the temperature stress of the sluice and avoid cracks.
关键词
水闸结构 /
低温季节施工 /
温度裂缝 /
温控措施 /
应力场
Key words
sluice structure /
construction in low temperature season /
temperature-caused cracks /
temperature control measures /
stress field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国水利部. 全国水利发展统计公报[M]. 北京:中国水利水电出版社, 2018.
[2] 朱岳明,黎 军,刘勇军.石梁河新建泄洪水闸闸墩裂缝成因分析[J].红水河,2002,21(2):44-47,61.
[3] 董功强, 任玉春. 献县枢纽节制闸底板裂缝分析及处理[J]. 水科学与工程技术, 2001(4):36-37.
[4] 周 灿.土谷塘一期泄水闸裂缝分析与处理[J].中国水运(下半月),2015,15(1):137-138,165.
[5] 潘 炜.贡川水电站水闸闸墩裂缝问题探讨[J].水利科技,2015(3):50-52.
[6] 郭念春,马殿君,徐艳军.沙颍河郑埠口枢纽工程节制闸闸墩裂缝成因分析[J].水运工程,2000(增刊1):89-92.
[7] 赵之瑾,关新强.水闸闸墩裂缝成因及防治措施[J].水利水电科技进展,2003,23(4):62-65.
[8] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社.1999.
[9] 王振红, 朱岳明, 于书萍,等. 水闸闸墩施工期温度场和应力场的仿真计算分析[J]. 天津大学学报,2008,41(4):476-481.
[10] 吉顺文,朱岳明,蒋一鸣.平原地区水工混凝土裂缝成因与防裂研究[J].三峡大学学报:自然科学版,2009,31(4):37-39.
[11] 牛道昌.水工混凝土干缩与裂缝的关系[J].水利水电工程设计,1995(4):44-50.
[12] 朱伯芳.论混凝土坝的几个重要问题[J].中国工程科学,2006,8(7):21-29.
[13] 朱岳明,贺金仁,刘勇军.龙滩高RCC重力坝夏季不同浇筑温度的温控防裂研究[J].水力发电,2002(11):32-36,73.
[14] LIN Shao-zhong, XIE Zhi-qiang. A Jacobi_PCG Solver for Sparse Linear Systems on Multi-GPU Cluster[J]. Journal of Supercomputing, 2017, 73: 433-454.
[15] 颉志强.多CPU+多GPU 并行在温度应力仿真分析中的应用[R]. 武汉:长江科学院,2016.
[16] 颉志强.水工混凝土温控仿真若干关键算法研究及应用[D].南京:河海大学,2012.
[17] 张智沛,杨 峰,强 晟,等.混凝土温度场和应力场仿真计算中桩基的热学和力学参数等效系数研究[J].华北水利水电大学学报:自然科学版,2019,40(1):79-84.
基金
国家自然科学基金项目(51509020);中央级公益性科研院所基本科研业务费项目(CKSF2019394/GC)