针对大单宽流量、低弗劳德数消力池内消能问题,通过物理模型试验方法,对比分析消力池内加设梯形墩和悬栅消能工后水力特性和消能效果,优化梯形墩-悬栅消力池布置形式。结果表明:在低弗劳德数水流条件下,梯形墩-悬栅联合消能工断面水深分布均匀,消力池底板沿程压力分布梯度和时均压力分布系数波动幅度较小,整体稳定性较优;动能修正系数基本保持在1<α<2的范围内,可有效改善入池断面流速分布;消能率由传统消力池的52.25%、70.37%、75.89%分别提升至56.74%、75.95%、79.22%;梯形墩-悬栅消力池内悬栅单排等间距、高度与尾坎同高布置时,梯形墩呈双排交错形式布置在距池首0.35L左右处对于整体流态改善明显,消力池出口流速可降至0.4 m/s,消能率提高至59.63%、76.12%、79.37%,研究结果可为同类工程的底流消能问题提供一种新思路。
Abstract
The layout form of trapezoidal pier and suspension grid in stilling basin is optimized through comparative analysis of the hydraulic characteristics and energy dissipation effect in the presence and in the absence of trapezoidal pier and suspended grid in stilling basin via physical model test. Results show that under the condition of water flow of low Froude number, the trapezoidal pier-suspended grid joint energy dissipator could generate uniform water depth distribution, smaller fluctuation range of pressure distribution gradient along the stilling basin floor and time-averaged pressure distribution coefficient, and better overall stability. The kinetic energy correction coefficient basically maintained in the range of 1 < α< 2, which can effectively improve the velocity distribution at the section of pool entrance. The energy dissipation rate increased from 52.25%, 70.37% and 75.89% to 56.74%, 75.95% and 79.22%, respectively. With the trapezoidal pier at about 0.35 L away from the head of stilling basin with staggered double row when the height of suspension grid is the same as that of tail ridge and arranging in single rows at equal spacing in the trapezoidal pier-suspension grid stilling basin, the overall flow pattern improves obviously, the flow rate at the outlet of stilling basin reduces to 0.4 m/s, and the energy dissipation rate increases to 59.63%, 76.12% and 79.37%. The research results offer an idea for the underflow energy dissipation of similar projects.
关键词
低弗劳德数水流 /
梯形墩-悬栅 /
水力特性 /
布置形式 /
时均压力分布系数
Key words
water flow of low Froude number /
trapezoidal pier-suspended grid /
hydraulic characteristics /
layout form /
time-averaged pressure distribution coefficient
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ALTALIB A N,MOHAMMED A Y,HAYAWI H A.Hydraulic Jump and Energy Dissipation Downstream Stepped Weir[J].Flow Measurement and Instrumentation,2019,69:1-7.
[2] 李一川, 牛争鸣, 李奇龙, 等. 大单宽流量低傅汝德数收缩墩底流消力池的试验研究[J].水利水电技术,2018, 49(5): 77-83.
[3] 谭高文, 韩昌海, 余凯文. 低弗劳德数水流二级消力池体型参数试验研究[J].水科学进展,2018, 29(6): 848-857.
[4] 董宗师, 王均星, 张文传, 等. 低Fr数非完全宽尾墩消能特性研究[J].四川大学学报(工程科学版),2016, 48(5): 9-15.
[5] 李梦成, 童海鸿. 低佛氏数底流消能辅助消能工模型试验分析[J].人民黄河,2011, 33(9): 144-146.
[6] 谭高文, 韩昌海, 韩 康, 等. 低弗劳德数水流二级消力池水力特性试验研究[J].水科学进展,2020, 31(1): 71-80.
[7] 路 奔. 青山水库工程溢洪道消能建筑物优化设计[J].中国水能及电气化, 2020(1): 31-33.
[8] 孙 伦, 路 明. 某拦河大坝下游消力池结构对消能防冲的影响[J].水利科技与经济,2017,23(12):15-20.
[9] 龙 建, 牛争鸣, 李奇龙. 增设收缩墩后的跌坎消力池三维流场研究[J].长江科学院院报,2020, 37(1): 67-72.
[10]蒋健楠, 牧振伟, 张佳祎. 消力池内双层悬栅对消能效果影响试验研究[J].水资源与水工程学报,2015, 26(3): 157-160.
[11]黄智敏, 陆汉柱, 付 波, 等.东山拦河闸加固改造工程消能研究[J].水资源与水工程学报,2017,28(1):152-156.
[12]李元杰, 马 力. 角木塘水电站工程高效联合消能工分析研究[J].四川水利,2018, 39(6): 1-5,23.
[13]王亚洲, 王均星, 周 招, 等. 新集水电站泄洪消能防冲刷优化研究[J].中国农村水利水电,2019(8): 197-203.
[14]邢建营, 杜嘉宇, 王均星, 等.白水水库工程溢流坝段底流消能试验研究[J].中国农村水利水电,2020(11):219-226.
[15]孙文博, 牧振伟, 高 尚. 低弗劳德数趾墩悬栅联合消能工数值模拟[J].水电能源科学,2019,37(7):81-85.
[16]孙文博, 牧振伟, 高 尚. 趾墩悬栅联合消能紊动及荷载特性数值模拟[J].长江科学院院报,2020, 37(1): 73-78.
[17]吴战营, 牧振伟. 辅助消能工联合运用试验研究及数值模拟[J].中国农村水利水电,2013(7): 111-117.
[18]吴战营, 牧振伟. 消力池内悬栅辅助消能工优化试验[J].水利水电科技进展,2014, 34(1): 27-31.
基金
国家自然科学基金项目(51469031);新疆维吾尔自治区高校科研计划创新团队项目(XJEDU2017T004)