基于改进模型的辽东湾东岸营口海域海底地下水排泄量计算

郭巧娜, 李孟军, 赵岳, 窦智, 周志芳

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (10) : 8-15.

PDF(7528 KB)
PDF(7528 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (10) : 8-15. DOI: 10.11988/ckyyb.20210629
水资源

基于改进模型的辽东湾东岸营口海域海底地下水排泄量计算

  • 郭巧娜, 李孟军, 赵岳, 窦智, 周志芳
作者信息 +

Calculating Submarine Groundwater Discharge in the East Coast of Liaodong Bay Based on the Improved Radium Mass Balance Model

  • GUO Qiao-na, LI Meng-jun, ZHAO Yue, DOU Zhi, ZHOU Zhi-fang
Author information +
文章历史 +

摘要

海底地下水排泄(SGD)是全球水循环的重要组成部分,也是向海洋输送营养盐等各类化学物质的必要途径之一。以辽东湾东部营口海域为研究对象,以天然镭同位素(224Ra、228Ra)作为示踪剂,建立镭质量平衡模型并加以改进,进而探讨再循环海水(RSGD)对研究区内水体刷新时间、SGD及携带氮磷营养盐通量的影响程度。结果表明:利用镭质量平衡模型计算水体刷新时间为9 d,改进后的镭质量平衡模型计算出的水体刷新时间为14.35~18.11 d;传统模型下SGD通量为(3.01~3.51)×108 m3/d。改进模型评估的SGD通量为(3.55~4.39)×108 m3/d,改进模型评估的水体刷新时间与SGD均明显高于初始模型,其中水体刷新时间增加了59.44%~101.22%;SGD通量增加了17.94%~25.07%。在此基础上,地下水向海输入的氮、磷营养盐通量在考虑RSGD的情况下分别为1.73×108、1.52×109 mol/d。研究结果证明了RSGD对SGD和营养盐通量存在较大影响,为营口海域生态环境评估提供了基础数据。

Abstract

Submarine groundwater discharge (SGD) represents an essential part of the global water cycle and one of the vital ways to transport various chemical substances such as nutrients to the ocean.The influences of recirculated seawater (RSGD) on water body refresh time, SGD, and the flux of nitrogen and phosphorus nutrients in Yingkou sea area in the eastern part of Liaodong Bay were investigated by establishing and improving the radium mass balance model with natural radium isotopes (224Ra and 228Ra) as tracers.The water refresh time calculated by the radium mass balance model is 9 days while by the improved radium mass balance model 14.35-18.11 days.The SGD flux in the traditional model is (3.01-3.51)×108 m3/d while in the improved model (3.55-4.39)×108 m3/d.The water refresh time and SGD calculated by the improved model increased by 59.44%-101.22% and 17.94%-25.07%, respectively, compared with those by the traditional model.Moreover, the nitrogen and phosphorus nutrient fluxes from groundwater to the sea are 1.73×108 mol/d and 1.52×109 mol/d, respectively, in consideration of RSGD.In conclusion, RSGD has a remarkable impact on SGD and nutrient fluxes.

关键词

海底地下水排泄 / 镭同位素 / 改进镭质量平衡模型 / 氮磷营养盐 / 营口海域

Key words

submarine groundwater discharge / radium isotopes / improved radium mass balance model / nitrogen and phosphorus nutrients / Yingkou sea area

引用本文

导出引用
郭巧娜, 李孟军, 赵岳, 窦智, 周志芳. 基于改进模型的辽东湾东岸营口海域海底地下水排泄量计算[J]. 长江科学院院报. 2022, 39(10): 8-15 https://doi.org/10.11988/ckyyb.20210629
GUO Qiao-na, LI Meng-jun, ZHAO Yue, DOU Zhi, ZHOU Zhi-fang. Calculating Submarine Groundwater Discharge in the East Coast of Liaodong Bay Based on the Improved Radium Mass Balance Model[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(10): 8-15 https://doi.org/10.11988/ckyyb.20210629
中图分类号: P641.2   

参考文献

[1] MOORE W S.The Effect of Submarine Groundwater Discharge on the Ocean[J].Annual Review of Marine Science,2010,2:59-88.
[2] MOORE W S.The Subterranean Estuary:A Reaction Zone of Ground Water and Sea Water[J].Marine Chemistry,1999,65(1):111-125.
[3] HWANG D,LEE Y,KIM G.Large Submarine Groundwater Discharge and Benthic Eutrophication in Bangdu Bay on Volcanic Jeju Island,Korea[J].Limnology and Oceanography,2005,50(5):1393-1403.
[4] HWANG D,KIM G,LEE W,et al.The Role of Submarine Groundwater Discharge (SGD) in Nutrient Budgets of Gamak Bay,a Shellfish Farming Bay,in Korea[J].Journal of Sea Research,2010,64(3):224-230..
[5] 刘花台,郭占荣,袁晓婕,等.用镭同位素评价海水刷新时间及海底地下水排泄[J].地球科学——中国地质大学学报,2013,38(3):599-606.
[6] 张成成.镭同位素评估辽东湾海底地下水排泄及其携带营养盐通量[D].北京:中国地质大学(北京),2018.
[7] WANG X J,LI H,ZHANG Y,et al.Investigation of Submarine Groundwater Discharge and Associated Nutrient Inputs into Laizhou Bay (China) Using Radium Quartet[J].Marine Pollution Bulletin,2020,157:111359.
[8] ZHANG Y,LI H.Improvement of Evaluation of Water Age and Submarine Groundwater Discharge:A Case Study in Daya Bay,China[J].Journal of Hydrology,2020,586,124775.
[9] YAN Z,LI H,KAI X,et al.Improving Estimation of Submarine Groundwater Discharge Using Radium and Radon Tracers:Application in Jiaozhou Bay,China[J].Journal of Geophysical Research:Oceans,2017,122(10):8263-8277.
[10] 张 艳.胶州湾海底地下水与营养物质输入及其环境效应[D].北京:中国地质大学(北京),2019.
[11] MOORE W S,SARMIENTO J L,KEY R M.Submarine Groundwater Discharge Revealed by 228Ra Distribution in the Upper Atlantic Ocean[J].Nature Geoscience,2008,1(5):309-311.
[12] DZHAMALOV R G,SAFRONOVA T I.On Estimating Chemical Discharge into the World Ocean with Groundwater[J].Water Resources,2002,29(6):626-631.
[13] CHARETTE M A,BUESSELER K O.Submarine Groundwater Discharge of Nutrients and Copper to an Urban Subestuary of Chesapeake Bay (Elizabeth River)[J].Limnology and Oceanography,2004,49(2):376-385.
[14] XU B C.Hydrodynamics in the Yellow River Estuary via Radium Isotopes:Ecological Perspectives[J].Continental Shelf Research,2013,66:19-28.
[15] SADAT-NOORI M,SANTOS I R,TAIT D R,et al.Fresh Meteoric Versus Recirculated Saline Groundwater Nutrient Inputs into a Subtropical Estuary[J].Science of the Total Environment,2016,566/567:1440-1453.
[16] HU Chuan-min,MULLER-KARGER F E,SWARZENSKI P W.Hurricanes,Submarine Groundwater Discharge,and Florida's Red Tides[J].Geophysical Research Letters,2006,33(11),doi:10.1029/2005GL025449.
[17] LEE Y,KIM G,LIM W,et al.A Relationship between Submarine Groundwater Borne Nutrients Traced by Ra Isotopes and the Intensity of Dinoflagellate Red-tides Occurring in the Southern Sea of Korea[J].Limnology and Oceanography,2010,55(1):1-10.
[18] 武 暕.辽东湾近岸海域水质状况及富营养化评价[J].环境保护与循环经济,2020,40(7):61-64.
[19] WANG X,LI H,LUO X,et al.Using 224Ra to Estimate Eddy Diffusivity and Submarine Groundwater Discharge in Laizhou Bay,China[J].Journal of Radio Analytical and Nuclear Chemistry,2016,308(2):403-411.
[20] MOORE W S.Seasonal Distribution and Flux of Radium Isotopes on the Southeastern U.S.Continental Shelf[J].Journal of Geophysical Research Oceans,2007,112(C10),doi:10.1029/2007JC004199.
[21] 张子鹏.辽东湾北部现代沉积作用研究[D].青岛:中国海洋大学,2013.
[22] LIU J,DU J,YI L.Ra Tracer-based Study of Submarine Groundwater Discharge and Associated Nutrient Fluxes into the Bohai Sea,China:A Highly Human-affected Marginal Sea[J].Journal of Geophysical Research:Oceans,2017,122(11):8646-8660.
[23] 刘建安.基于镭同位素评估河口和近海海底地下水排放及其环境效应[D].上海:华东师范大学,2019.
[24] 张玄通.用镭同位素评估渤海湾海底地下水排泄及其营养盐输入[D].北京:中国地质大学(北京),2018.
[25] WANG Q Q.Submarine Groundwater Discharge and Associated Nutrient Fluxes in the Greater Bay Area,China Revealed by Radium and Stable Isotopes[J].Geoscience Frontiers,2021,12(5):401-416.
[26] 王 博,郭占荣,袁晓婕,等.用镭同位素评价胶州湾水体表观年龄及地下水入海通量[J].海洋与湖沼,2015,46(1):88-95.
[27] ZHANG Yan,LI Hai-long,WANG Xue-jing,et al.Estimation of Submarine Groundwater Discharge and Associated Nutrient Fluxes in Eastern Laizhou Bay,China using 222Rn[J].Journal of Hydrology,2016,533:103-113.
[28] WANG XL,DU J,JI T,et al.An Estimation of Nutrient Fluxes via Submarine Groundwater Discharge into the Sanggou Bay—A Typical Multi-species Culture Ecosystem in China[J].Marine Chemistry,2014,167:113-122.
[29] GARCIA-SOLSONA E,GARCIA-ORELLANA J,MASQUÉ P,et al.An Assessment of Karstic Submarine Groundwater and Associated Nutrient Discharge to a Mediterranean Coastal Area (Balearic Islands,Spain) Using Radium Isotopes[J].Biogeochemistry,2010,97(2/3):211-229.
[30] KIM G,RYU J,YANG H,et al.Submarine Groundwater Discharge (SGD) into the Yellow Sea Rrevealed by 228Ra and 226Ra Isotopes:Implications for Global Silicate Fluxes[J].Earth and Planetary Science Letters,2005,237(1/2):156-166.
[31] LIU Q,DAI M,CHEN W,et al.How Significant is Submarine Groundwater Discharge and Its Associated Dissolved Inorganic Carbon in a River-dominated Shelf System?[J].Biogeosciences,2012,9(5):1777-1795.

基金

国家自然科学基金面上项目(41772235);中央高校基本科研业务费项目(B210202108)

PDF(7528 KB)

Accesses

Citation

Detail

段落导航
相关文章

/