为揭示区域总体干旱程度及其变化特征,以长株潭地区为研究区,在标准化降水指数(SPI)、标准化水位指数(SZI)、标准化区域水资源短缺指数(SSDI)基础上,利用动态权重系数法构建区域干旱综合指标MIDI,结合历史受旱面积率、因旱减少供水量等旱情统计资料,对MIDI的适用性进行分析验证。以长株潭地区11个气象站、12个水文站近几十年实测资料为例,分别采用游程理论和Copula函数法识别干旱事件,并计算其发生频率,采用多尺度统计分析法,对区域综合干旱的演变特征进行分析。研究结果表明:SPI、SZI、SSDI对于不同水源、行业类型干旱评价各具优势,SPI、SSDI年干旱累积烈度与长株潭地区农业受旱面积率相关性相对较高;SZI年干旱累积烈度与城镇因旱减少供水量相关性较高,更适用于依靠地表径流为主要供水水源的城镇干旱地区评价。本研究提出的动态权重系数法,综合考虑了区域产业结构的年际变化、产业需水规律的季节性变化等因素,可反映不同阶段各单项指标干旱对于旱情的主导作用,适用于多种水源和产业类型的区域旱情综合评价;从月、季和年3种时间尺度,分析了长株潭地区MIDI综合干旱的变化特征,结果表明长株潭地区近20 a来极端干旱发生频次呈现波动增加趋势。
Abstract
To reveal the regional overall drought degree and its change characteristics, a regional drought comprehensive index (MIDI) was constructed by using the dynamic weight coefficient method based on the calculation results of standardized precipitation index (SPI), standardized runoff index (SZI) and standardized regional water shortage index (SSDI). The applicability of MIDI was analyzed and verified according to historical drought statistics such as drought-affected area rate and reduced water supply due to drought. With the measured data of eleven meteorological stations and twelve hydrological stations of Changsha-Zhuzhou-Xiangtan region in recent decades as input, the drought events were identified by using run length theory and Copula function method, and their occurrence frequency was calculated. Furthermore, the evolution characteristics of regional comprehensive drought were analyzed by using trend analysis method. Results manifested that SPI, SZI and MIDI index have their own advantages in drought evaluation for different water sources and industry types. The annual cumulative drought intensity of SPI and SSDI is highly correlated with the rate of drought-affected crop area; while the annual cumulative drought intensity of SZI is highly correlated with urban water supply reduction due to drought, hence is more suitable for assessing the drought of urban area which is relied on surface runoff as the major water supply source. The dynamic weight coefficient method proposed in this study reflects the leading role of single drought index in different stages by taking the interannual change of regional industrial structure and the seasonal change of industrial water demand regularities into consideration. It is suitable for the comprehensive regional drought evaluation of various water sources and industrial types. Last but not the least, the MIDI of Changsha-Zhuzhou-Xiangtan region was examined from monthly, seasonal and yearly scales, and results unveiled that the frequency of extreme drought in Changsha-Zhuzhou-Xiangtan region has been increasing fluctuatingly in the recent two decades.
关键词
干旱综合指标 /
干旱演变 /
干旱评价 /
干旱频率 /
长株潭地区
Key words
comprehensive index of drought /
drought evolution /
drought assessment /
drought frequency /
Changsha-Zhuzhou-Xiangtan region
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁文平,周广胜.干旱指标的理论分析与研究展望[J].地球科学进展,2004,19(6):982-991.
[2] 王劲松, 郭江勇, 周跃武,等. 干旱指标研究的进展与展望[J]. 干旱区地理(汉文版), 2007, 30(1):60-65.
[3] 李柏贞, 周广胜. 干旱指标研究进展[J].生态学报,2014, 34(5):1043-1052.
[4] LI B, ZHOU G. Advance in the Study on Drought Index[J].Acta Ecologica Sinica,2014,34(5):1043-1052.
[5] 袁 梦, 畅建霞, 黎云云. 基于综合干旱指数的渭河流域干旱时空分析[J].武汉大学学报(工学版) 2018,51(5):401-408.
[6] WANG F, WANG Z, YANG H. A New Copula-based Standardized Precipitation Evapotranspiration Streamflow Index for Drought Monitoring[J]. Journal of Hydrology, 2020, 585: 124793.
[7] HUANG Sheng-zhi, WANG Lu, WANG Hao, et al. Spatio-temporal Characteristics of Drought Structure across China Using an Integrated Drought Index[J]. Agricultural Water Management, 2019, 218: 182-192.
[8] ZHANG Ying, HUANG Sheng-zhi, HUANG Qiang, et al. Assessment of Drought Evolution Characteristics Based on a Nonparametric and Trivariate Integrated Drought Index[J]. Journal of Hydrology,2019, 579(C): 124230.
[9] YANG Jie, CHANG Jian-xia, WANG Yi-min. Comprehensive Drought Characteristics Analysis Based on a Nonlinear Multivariate Drought Index[J]. Journal of Hydrology, 2018, 557: 651-667.
[10] 常文娟, 梁忠民, 马海波. 基于主成分分析的干旱综合指标构建及其应用[J]. 水文, 2017, 37(1):33-38.
[11] 顾西辉, 张 强, 陈晓宏. 中国降水及流域径流均匀度时空特征及影响因子研究[J]. 自然资源学报, 2015, 30(10):1714-1724.
[12] 白超海. 湖南省干旱成因分析及对策研究[J]. 中国防汛抗旱, 2010, 20(6):20-22.
[13] 陈 进, 黄 薇. 湘江近年枯季低水位的原因及解决对策[J]. 长江科学院院报, 2010,27(10):1-4.
[14] 黎祖贤, 周 盛, 樊志超,等. 湖南特大干旱时空变化特征分析[J]. 干旱气象, 2018, 36(4):578-582.
[15] 胡国华, 李 滔, 盛 丰,等. 基于降水量距平百分率的湘江流域干旱时空特征研究[J]. 长沙理工大学学报(自然科学版), 2020, 17(1):74-82,91.
[16] 王 欣, 凌 娟, 莫宏伟,等. 长株潭地区20世纪50年代以来极端气候事件变化特征[J]. 热带地理, 2008(6):504-507.
[17] 李 明, 柴旭荣, 王贵文,等. 长江中下游地区气象干旱特征[J]. 自然资源学报, 2019, 34(2):374-384.
[18] 杨奇勇, 尹 辉. 湖南省农业干旱水资源风险评价[J]. 水资源研究, 2008, 28(4):14-16.
[19] ANGELIDIS P, MARIS F, KOTSOVINOS N, et al. Computation of Drought Index SPI with Alternative Distribution Functions[J]. Water Resources Management, 2012, 26(9): 2453-2473.
[20] 洪兴骏, 郭生练, 周研来. 标准化降水指数SPI分布函数的适用性研究[J]. Journal of Water Resources Research, 2013, 2(1):33-41.
[21] 胡彩虹, 王金星, 王艺璇,等. 水文干旱指标研究进展综述[J]. 人民长江, 2013, 44(7):11-15.
[22] 尹 军. 流域干旱还原理论与方法研究[D]. 北京:中国水利水电科学研究院, 2017.
[23] 陆桂华, 闫桂霞, 吴志勇. 基于Copula函数的区域干旱分析方法[J]. 水科学进展, 2010, 21(2):188-193.
[24] 刘晓云, 王劲松, 李耀辉. 基于Copula函数的中国南方干旱风险特征研究[J]. 气象学报, 2015, 73(6):1080-1091.
[25] 于 忱, 陈 隽, 王红瑞. 多变量 Copula 函数在干旱风险分析中的应用进展[J]. 南水北调与水利科技, 2018, 16(1):14-21.
[26] 王 林, 陈 文. 近百年西南地区干旱的多时间尺度演变特征[J]. 气象科技进展, 2012(4):21-26.
[27] 金菊良, 杨齐祺, 周玉良,等. 干旱分析技术的研究进展[J]. 华北水利水电学院学报, 2016, 37(2):1-15.
[28] ZHAO G. A Modeling Framework for Evaluating the Drought Resilience of a Surface Water Supply System under Non-stationarity[J]. Journal of Hydrology, 2018, 563: 22-32.
[29] ADITI M. Motivational indicators of Protective Behaviour in Response to Urban Water Shortage Threat[J]. Journal of Hydrology, 2013, 491: 100-107.
基金
国家自然科学基金项目(U2040212);长江科学院院级创新团队项目(CKSF2017061/SZ)