土石方量是影响大型土木工程的工程进度和技术经济指标的重要参数。提出了一种基于BIM的精细化土石方量计算方法,以提高计算速度和精度。首先,将大型土木工程的地表面分成若干矩形子域,在每个子域上采用独立的薄板样条插值函数进行曲面拟合;然后,采用规则直角三角形网格对地形曲面进行离散,通过三角形网格的自动加密来提高和控制计算精度;最后,通过开挖面与地形面三角面片的拓扑及几何计算,得到准确的开挖边界位置,从而实现自动放坡并在BIM中生成三维开挖实体,得到精细化的土石方量计算结果。算例分析结果表明,所提出的方法可以自动准确计算大型土木工程的土石方量,提高设计效率和质量。
Abstract
In large-scale civil engineering, the quantity of earthwork is an important parameter that affects the construction schedule and the technical and economic indexes of the project. In this paper, a precise calculation method for earthwork volume is presented based on BIM(Building Information Model) techniques to improve the calculation efficiency and accuracy. Firstly, the terrain surface is divided into several rectangular subdomains, each of which is simulated with an independent thin plate spline interpolation function. Furthermore, the terrain surface is discretized with regular right-angled triangular meshes, and the meshes are refined automatically to improve and control the simulation accuracy. In subsequence, through the topological and geometrical calculation of the terrain surface and the designed slope, the accurate excavation line is obtained and the BIM model is generated automatically. Finally, the 3D excavated body is generated by the Boolean operation between the original terrain body and the excavated slope, and the precise quantity of earthwork can be acquired. Engineering practice has proved that the quantity of earthwork in large-scale civil engineering can be obtained precisely with the present method, and the design efficiency and quality are also improved.
关键词
土石方量 /
BIM /
薄板样条插值函数 /
拓扑及几何计算 /
计算精度 /
计算速度
Key words
earthwork volume /
BIM /
thin plate spline interpolation function /
topological and geometrical calculation /
calculation precision /
calculation speed
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HINTZ C, VONDEROHE A P. Comparison of Earthwork Computation Methods[J]. Transportation Research Record, 2011, 2215: 100-104.
[2] 常 青. 工程土石方量计算方法的对比研究[J]. 中国勘察设计,2013(4):82-84.
[3] 李 德,宾洪祥,黄桂林. 水利水电工程 BIM 应用价值与企业推广思考[J]. 水利水电技术,2013,47(8):40-43.
[4] 林 伟. 基于BIM的水电工程科技成果可视化与应用示范[J]. 长江科学院院报,2016,33(8):134-137.
[5] 王天兴,张继勋,任旭华,等. 基于BIM技术的水工隧洞施工进度仿真研究[J]. 长江科学院院报,2020,37(11):149-155.
[6] 林韩涵,周红波,何 溪. 基于BIM设计软件的工程量计算实现方法研究[J]. 建筑经济,2015,36(4):59-62.
[7] 杨铁增. 浅谈BIM技术在建筑工程算量中的应用[J]. 水利规划与设计,2018(2):62-64.
[8] 袁荣丽,朱记伟,杨党锋,等. 基于BIM技术的建筑工程三维算量应用研究[J]. 工程管理学报,2017,31(2):106-110.
[9] 曹裕周. BIM 技术在土石方算量中的应用[J]. 施工技术,2018,47(增刊):158-160.
[10] 江宝刚. 浅谈Autodesk Civil3D软件在工程中的应用[J]. 山西建筑,2008,34(16):364-365.
[11] 张仁杰,王玮栋.浅谈AutoCAD Civil3D软件在土石方计算工程量中的应用[J]. 中国水运,2012,12(2):84-85.
[12] 余 剑. Civil 3D在土方量计算中的应用[J]. 城市勘测,2009(4):128-130.
[13] 樊旭宏. Civil 3D在场地土方量计算中的应用[J]. 建材技术与应用,2012(10):42-43.
[14] 覃 锋. AutoCAD Civil 3D在土方工程中的应用[J]. 科技与创新,2020(20):160-161.
[15] 张生喜. 基于BIM技术的土石方工程应用[J]. 甘肃科技,2020,36(18):101-102.
[16] 武卫平. AutoCAD Civil 3D 2018场地设计实例教程[M]. 北京:机械工业出版社,2018.
[17] 杜国明,贾良文. 薄板样条函数在空间数据插值中的应用[J]. 计算机工程与应用,2009,45(36):238-240.