考虑滞后效应与吸附作用的非饱和土SWCC分形模型

李慧鑫, 曹文贵, 陈可

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (6) : 82-89.

PDF(1244 KB)
PDF(1244 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (6) : 82-89. DOI: 10.11988/ckyyb.20210135
岩土工程

考虑滞后效应与吸附作用的非饱和土SWCC分形模型

  • 李慧鑫1, 曹文贵1, 陈可2
作者信息 +

Fractal Model of Soil Water Characteristic Curve of Unsaturated Soil in Consideration of Hysteresis Effect and Adsorption

  • LI Hui-xin1, CAO Wen-gui1, CHEN Ke2
Author information +
文章历史 +

摘要

传统土-水特征曲线(SWCC)模型的研究仅考虑了土壤基质势的毛细组分而忽略了吸附组分,高估了土壤在低饱和度范围的基质吸力。针对该问题,假设土壤孔隙系统可用一簇带有孔喉的毛细管表示,且其孔径分布服从分形规律。在此基础上将土壤中水分运移分为2个阶段,即毛细水与吸附水共同参与水分运移阶段,以及仅吸附水参与水分运移阶段,推导得到了可以反映全基质吸力范围土壤持水特征及滞后效应的SWCC模型。最后采用已有的试验数据与研究结果对得到的本构模型进行验证,结果表明所提出的SWCC模型预测曲线与试验数据吻合良好,且相比已有方法可更好地描述非饱和土SWCC的持水特性,证明了该模型的合理性与可行性。

Abstract

In traditional research on SWCC model, only the capillary component of soil matrix potential was taken into consideration, while the adsorption component was ignored, which makes it overestimate the matric suction in the low saturation range. In view of this, the soil pore system is assumed to be represented by a cluster of capillaries with pore throats with the pore size distribution obeying the fractal power law. On this basis, the water movement in soil can be divided into two stages, i.e., capillary water and adsorbed water both participate in water movement, and only adsorbed water participates in water movement. The SWCC model reflecting soil’s water holding capacity and the hysteresis effect in the whole range of matric suction is derived.By existing test data and research results,the present constitutive model is verified to be rational and feasible with the predicted curve agreeing well with test data,and capable of better reflecting the water holding capacity of unsaturated soil than existing methods.

关键词

非饱和土 / 分形理论 / SWCC / 毛细管模型 / 滞后效应 / 吸附水

Key words

unsaturated soil / fractal theory / SWCC / capillary model / hysteresis effect / adsorbed water

引用本文

导出引用
李慧鑫, 曹文贵, 陈可. 考虑滞后效应与吸附作用的非饱和土SWCC分形模型[J]. 长江科学院院报. 2022, 39(6): 82-89 https://doi.org/10.11988/ckyyb.20210135
LI Hui-xin, CAO Wen-gui, CHEN Ke. Fractal Model of Soil Water Characteristic Curve of Unsaturated Soil in Consideration of Hysteresis Effect and Adsorption[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(6): 82-89 https://doi.org/10.11988/ckyyb.20210135
中图分类号: TU431   

参考文献

[1] 汪东林, 栾茂田, 杨 庆. 重塑非饱和黏土的土-水特征曲线及其影响因素研究[J]. 岩土力学, 2009, 30(3): 751-756.
[2] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
[3] FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M]. New York:John Wiley & Sons,1993.
[4] LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: John Wiley & Sons, 2004.
[5] TOPP G C. Soil Water Hysteresisin Silt Loam and Clay Loam Soils[J]. Water Resources Research, 1971, 7(4): 914-920.
[6] PHAM H Q, FREDLUND D G, BARBOUR S L. A Practical Hysteresis Model for the Soil-Water Characteristic Curve for Soils with Negligible Volume Change[J]. Geotechnique, 2003, 53(2): 293-298.
[7] ZHANG Z F. Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation[J]. Vadose Zone Journal, 2011, 10(4): 1299-1308.
[8] NIMMO J R.Semi-empirical Model of Soil Water Hysteresis[J]. Soil Science Society of America Journal,1992,56(4): 936.
[9] SCOTT P S, FARQUHAR G J, KOUWEN N. Hysteretic Effects on Net Infiltration[J]. Advances in Infiltration, 1983, 11(83): 163-170.
[10] MUALEM Y. Modified Approach to Capillary Hysteresis Based on a Similarity Hypothesis[J]. Water Resources Research, 1973, 9(5): 1324-1331.
[11] PARLANGE J Y. Capillary Hysteresis and the Relationship between Drying and Wetting Curves[J]. Water Resources Research, 1976, 12(2): 224-228.
[12] TULLER M, OR D. Water Filmsand Scaling of Soil Characteristic Curves at Low Water Contents[J]. Water Resources Research, 2005, 41(9), doi: 10.1029/2005WR004142.
[13] PETERS A, DURNER W. A Simple Model for Describing Hydraulic Conductivity in Unsaturated Porous Media Accounting for Film and Capillary Flow[J]. Water Resources Research, 2008, 44(11), doi: 10.1029/2008WR007136.
[14] HU R, CHEN Y F, LIU H H, et al. A Water Retention Curve and Unsaturated Hydraulic Conductivity Model for Deformable Soils: Consideration of the Change in Pore-size Distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
[15] POULOVASSILIS A. Hysteresis of Pore Water,an Application of the Concept of Independent Domains[J]. Soil Science, 1962, 93(6): 405-412.
[16] 刘 艳, 赵成刚. 土水特征曲线滞后模型的研究[J]. 岩土工程学报, 2008(3): 399-405.
[17] 郁伯铭, 员美娟. 多孔介质中流体流动的分形分析[C]//中国数学力学物理学高新技术交叉研究学会学术年会. 北京: 科学出版社, 2008.
[18] THOMPSON A H, KATZ A J, KROHN C E. The Microgeometry and Transport Properties of Sedimentary Rock[J]. Advances in Physics, 1987, 36(5): 625-694.
[19] KROHN C E. Sandstone Fractal and Euclidean Pore Volume Distributions[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B4): 3286-3296.
[20] KROHN C E. Fractal Measurements of Sandstones, Shales, and Carbonates[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B4): 3297-3305.
[21] GUARRACINO L, RÖTTING T, CARRERA J. A Fractal Model to Describe the Evolution of Multiphase Flow Properties During Mineral Dissolution[J]. Advances in water resources, 2014, 67: 78-86.
[22] SOLDI M, GUARRACINO L, JOUGNOT D. A Simple Hysteretic Constitutive Modelfor Unsaturated Flow[J]. Transport in Porous Media, 2017, 120(2): 271-285.
[23] 杨明辉, 陈 贺, 陈 可. 基于分形理论的 SWCC 边界曲线 滞后效应模型研究[J]. 岩土力学, 2019, 40(10): 3805-3812.
[24] LU N.Generalized Soil Water Retention Equation for Adsorption and Capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(10): 04016051.
[25] CHEN K, CHEN H. Generalized Hydraulic Conductivity Model for Capillary and Adsorbed Film Flow[J]. Hydrogeology Journal, doi: 10.1007/s10040-020-02175-1.
[26] YU B, LI J. Some Fractal Characters of Porous Media[J]. Fractals, 2001, 9(3): 365-372.
[27] PHAM H Q. An Engineering Model of Hysteresis for Soil-Water Characteristic Curves[D]. Canada: University of Saskatchewan, 2001.

基金

国家自然科学基金项目(751201250)

PDF(1244 KB)

Accesses

Citation

Detail

段落导航
相关文章

/