基于循环神经网络的水库水位预测方法

纪国良, 周曼, 刘涛, 胡腾腾, 丁勇

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (3) : 80-85.

PDF(2222 KB)
PDF(2222 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (3) : 80-85. DOI: 10.11988/ckyyb.20201266
水力学

基于循环神经网络的水库水位预测方法

  • 纪国良, 周曼, 刘涛, 胡腾腾, 丁勇
作者信息 +

Predicting Water Level for Large Reservoirs Using Recurrent Neural Network

  • JI Guo-liang, ZHOU Man, LIU Tao, HU Teng-teng, DING Yong
Author information +
文章历史 +

摘要

大型水库重要站点的水位预测是水库防洪中的重要问题,目前主要采用水动力学方法计算。但是由于该方法对输入边界条件的准确性要求较高,而实时调度情况下又很难完全满足此条件,因此容易造成较大的水位计算误差。对此,提出了循环神经网络模型,从水库运行的历史数据中挖掘知识,学习入库流量和坝前水位到目标站点水位的映射关系,不需要使用地形资料等数据以避免系统性误差的影响,既可以降低模型对输入边界准确性的要求,又可以在一定程度上提升水位预测精度。以三峡水库长寿站水位计算为例,使用2009—2019年数据训练、验证和测试模型,试验结果显示长寿站水位在接近三峡水库土地征用线时,计算误差在±0.4 m以内,精度优于水动力学模型,可满足实时调度对水位精度的要求。

Abstract

The prediction of water level for important stations of large reservoirs is an essential issue in flood control. At present, hydrodynamics method is mainly used to calculate the water level. However, due to the high accuracy requirements of input boundary conditions, which is difficult to meet under real-time dispatching, the calculation error is likely to be large. In view of this, we present a recurrent neural network model to mine the knowledge from historical data of reservoir operation and to learn the mapping relationship between inlet flow (including main stream and tributaries) and the water level from in front of the dam to the target station. This method does not use terrain data to avoid the effect of systematic error, thereby reducing the requirement for input boundary accuracy on one hand and improve prediction accuracy on the other. In the experimental part, we compute the water level of Changshou Station of Three Gorges Reservoir. The data sets (including training, validation and test sets) consist of the operation data from 2009 to 2019. When the water level is close to the land requisition line, the prediction error is within±0.4 m, which is better than the result of water dynamic model. Therefore, the proposed method can meet the accuracy requirement of the real-time scheduling of water level.

关键词

水动力学 / 入库流量 / 地形资料 / 循环神经网络 / 三峡水库

Key words

hydrodynamics / inlet flow / topographic data / recurrent neural network / Three Gorges Reservoir

引用本文

导出引用
纪国良, 周曼, 刘涛, 胡腾腾, 丁勇. 基于循环神经网络的水库水位预测方法[J]. 长江科学院院报. 2022, 39(3): 80-85 https://doi.org/10.11988/ckyyb.20201266
JI Guo-liang, ZHOU Man, LIU Tao, HU Teng-teng, DING Yong. Predicting Water Level for Large Reservoirs Using Recurrent Neural Network[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(3): 80-85 https://doi.org/10.11988/ckyyb.20201266
中图分类号: TV143   

参考文献

[1] 白玉川. 水力学[M]. 天津:天津大学出版社,2007.
[2] 黄仁勇, 黄 悦. 三峡水库干支流河道一维非恒定水沙数学模型初步研究[J]. 长江科学院院报, 2009,26(2):9-13.
[3] 杨世孝, 肖子良. 反求糙率的一种数值方法[J].数值计算与计算机应用, 1994, 15(4):247-260.
[4] 陈素红, 刘孟凯, 邢领航. 基于多亲遗传算法的渠道非恒定流糙率率定模型及其应用[J].水电能源科学, 2013,31(5):81-83.
[5] 陈一帆,程海洋,万晓丽,等.结合糙率校正的河网水情数据同化[J].水科学进展,2015,26(5):731-738.
[6] GREFF K, SRIVASTAVA R K, JAN KOUTNÍK, et al. LSTM: A Search Space Odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
[7] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780.
[8] DEY R, SALEMT F M. Gate-variants of Gated Recurrent Unit(GRU) Neural Networks[C]//Proceedings of 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Boston, Massachusetts, USA. August 6-9, 2017: 1597-1600.
[9] 王 静, 何 挺, 郭旭东,等. 基于逻辑回归模型的环北京地区土地退化态势分析[J]. 地理科学进展, 2005, 24(5):23-32.
[10]ABADI M. TensorFlow: Learning Functions at Scale[C]//Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. September 2016. doi: 10.1145/2951913.2976746.
[11]SANNER M F. Python: A Programming Language for Software Integration and Development[J]. Journal of Molecular Graphics & Modelling, 1999, 17(1):57-61.

基金

国家重点研发计划项目(2016YFC0402306-01);中国长江三峡集团有限公司自主科研项目《基于多方法的三峡水库回水规律研究》(WWKY-2020-0451)

PDF(2222 KB)

Accesses

Citation

Detail

段落导航
相关文章

/