为揭示波浪驱动下箱式浮体运动响应及受波浪力的影响机制,采用Smoothed Particle Hydrodynamics(SPH)方法对不同Keulegan-Carpenter(KC)数工况下单个浮体的运动响应及所受波浪力、不同浮体间距δ工况下2个浮体的运动响应进行了系统研究。结果表明:KC数越大,单个浮体的运动响应越剧烈,所受波浪力越大。随着δ的增加,上游浮体(浮体I)的纵向位移逐渐接近于单个浮体工况,垂向运动以及俯仰转动受δ的影响较小;下游浮体(浮体Ⅱ)的纵向位移呈现明显的增加趋势,俯仰转动有逐渐减弱趋势,而垂向运动受δ的影响较小。
Abstract
In the purpose of revealing the mechanism of motions and wave forces of floating rectangle boxes driven by waves, a numerical mode based on the Smoothed Particle Hydrodynamics (SPH) method was developed. The motions and wave forces of a single floating rectangle box under different Keulegan-Carpenter (KC) numbers were systematically studied, and the motions of two floating rectangle boxes under different spacings (δ) between floating bodies were also examined. It was found that the surge, heave and pitch motions of the single floating rectangle box all intensified with the growth of KC number, and the corresponding wave forces also strengthened. As δ increased, the surge motion of the upstream floating box (floating box I) gradually approached that of the single floating box, while the heave and pitch motions were approximately unaffected. Moreover, the surge motion of the downstream floating box (floating box II) strengthened apparently, the pitch motion showed a tendency of gradual decline, whereas the heave motion was still approximately unaffected.
关键词
箱式浮体 /
运动响应 /
SPH方法 /
KC数 /
浮体间距 /
波浪力
Key words
floating rectangle box /
motions /
SPH method /
KC number /
spacing between floating bodies /
wave forces
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾 东, 叶恒奎, 孙江龙. 箱式浮体在波浪中的运动分析[J]. 中国舰船研究, 2006, 1(5/6): 5-8.
[2] ZHAO X Z,HU C H.Numerical and Experimental Study on a 2-D Floating Body under Extreme Wave Conditions[J].Applied Ocean Research, 2012, 35: 1-13.
[3] HE M, REN B, QIU D H. Experimental Study of Nonlinear Behaviors of a Free-floating Body in Waves[J]. Chinese Ocean Engineering, 2016, 30(3): 421-430.
[4] WANG W H, DU Y Z, WANG L L, et al. Experimental Analysis on Behaviour in Waves for Sandglass-type Floating Body[J]. Ships and Offshore Structures, 2017, 12(3): 433-441.
[5] JI C Y, YANG K, CHENG Y, et al. Numerical and Experimental Investigation of Interactions between Free-surface Waves and a Floating Breakwater with Cylindrical Dual/Rectangular-Single Pontoon[J]. Chinese Ocean Engineering, 2018, 32(4): 388-399.
[6] YANG Z W, XIE M X, GAO Z L, et al. Experimental Investigation on Hydrodynamic Effectiveness of a Water Ballast Type Floating Breakwater[J]. Ocean Engineering, 2018, 167: 77-94.
[7] WU G X, HU Z Z. Simulation of Nonlinear Interactions between Waves and Floating Bodies through a Finite-element-based Numerical Tank[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2004, 460(2050): 2797-2817.
[8] HU Z Z, CAUSON D M, MINGHAM C G, et al. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves[J]. Natural Hazards and Earth System Science, 2011, 11(2): 519-527.
[9] JEONG K L, LEE Y G. A Numerical Simulation Method for the Flow Around Floating Bodies in Regular Waves Using a Three-dimensional Rectilinear Grid System[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3): 277-300.
[10]OMIDVAR P, STANSBY P K, ROGERS B D. SPH for 3D Floating Bodies Using Variable Mass Particle Distribution[J]. International Journal for Numerical Methods in Fluids, 2013, 72: 427-452.
[11]曹文瑾, 孙中国, 席 光. 移动粒子半隐式法流固耦合模型及自由浮体数值研究[J]. 西安交通大学学报, 2014, 48(8): 136-140.
[12]谢 楠, 郜焕秋. 波浪中两个浮体水动力相互作用的数值计算[J]. 船舶力学, 1999, 3(2): 7-15.
[13]孙丽娜. 基于SPH方法的多浮体碰撞运动数值研究[D]. 武汉: 武汉理工大学, 2016.
[14]ZHANG J Z, TAFLANIDIS A A, SCRUGGS J T. Surrogate Modeling of Hydrodynamic Forces between Multiple Floating Bodies through a Hierarchical Interaction Decomposition[J]. Journal of Computational Physics, 2020, 408: 109298.
[15]MONAGHAN J J. Smoothed Particle Hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
[16]FOURTAKAS G. Modelling Multi-phase Flows in Nuclear Decommissioning Using SPH[D]. Manchester: University of Manchester, 2014.
[17]LEIMKUHLER B J,MATTHEWS C.Molecular Dynamics[M]. New York: Springer International Publishing,2016.
[18]REN B, HE M, DONG P, et al. Nonlinear Simulations of Wave-induced Motionss of a Freely Floating Body Using WCSPH Method [J]. Applied Ocean Research, 2015, 50: 1-12.
[19]MADSEN O S. On the Generation of Long Waves[J]. Journal of Geophysical Research, 1971, 76(36): 8672-8683.
[20]CHEN X B. Middle-field Formulation for the Computation of Wave-drift Loads[J]. Journal of Engineering Mathematics, 2007, 59(1):61-82.
基金
安徽省自然科学基金项目(2008085QA22);安徽工程大学国家自然科学基金预研项目(Xjky2020167)