预应力锚杆因出色的维稳能力及巨大的经济效益,在岩土锚固工程中扮演着重要角色。然而,预应力锚杆的长期性能常因周围恶劣岩土环境的腐蚀而不断退化。为了探究预应力锚杆在模拟岩土环境中的锈蚀机制,通过开展室内加速腐蚀试验,基于电化学阻抗谱及电化学极化曲线分析了处于弱酸、通氧条件下的预应力锚杆腐蚀损伤时变行为,以及该环境下预应力锚杆锚固力与腐蚀速率的关系。结果发现,试验过程中预应力锚杆均未出现明显钝化,浸泡前期处于未通氧环境下预应力锚杆的电化学阻抗谱为一半径很大的容抗弧,预应力锚杆腐蚀不明显,锈蚀受电荷传递控制,中后期阻抗逐渐减小;低通氧速率下预应力锚杆腐蚀由电荷传递与扩散过程联合控制;高通氧速率下预应力锚杆腐蚀受扩散控制作用随通氧速率增大稍有提前。预应力锚杆的耐蚀性随通氧速率增大并非一直降低,本次试验中锚固力损失与腐蚀速率相关性较小。
Abstract
Prestressed rock bolt plays a crucial role in geotechnical anchoring engineering thanks to its excellent stability and huge economic benefits. The long-term performance of prestressed rock bolt, however, has been degrading due to the aggressive corrosion environment of surrounding rock and soil. To investigate into the corrosion mechanism of prestressed rock bolts in simulated geotechnical environments, we examined the time-varying behaviors of corrosion damage of prestressed rock bolts under weak acid and oxygen-ventilated conditions based on electrochemical impedance spectrum and electrochemical polarization curve via indoor accelerated corrosion test, and further analyzed the relationship between anchoring force and corrosion rate of prestressed rock bolts. Results revealed no evident passivation of prestressed rock bolts during the experiment. In pre-immersion stage with no oxygen, the electrochemical impedance spectrum of prestressed rock bolt was a large tolerance arc; controlled by charge transfer, the corrosion of prestressed rock bolt was not obvious, and the impedance decreased gradually with time. With oxygen ventilated at low rate, the corrosion of prestressed rock bolt was controlled by both charge transfer and diffusion process; at high-rate of oxygen ventilation, corrosion was controlled merely by diffusion process and appeared earlier with the growth of oxygen flow rate. In conclusion, the corrosion resistance of prestressed rock bolt did not always attenuate with the increase of oxygen flow rate, and the correlation between loss of anchoring force and corrosion rate was weak in the present test.
关键词
预应力锚杆 /
腐蚀损伤 /
电化学阻抗谱 /
极化曲线 /
通氧环境 /
锚固力损失
Key words
prestressed rock bolts /
corrosion damage /
electrochemical impedance spectroscopy /
polarization curve /
oxygen-ventilated environment /
anchoring force loss
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾宪明,陈肇元,王靖涛,等. 锚固类结构安全性与耐久性问题探讨[J]. 岩石力学与工程学报,2004,23(13):2235-2242.
[2] 李永和.锚喷结构锈蚀开裂前钢锚杆锈蚀量的计算公式及其分析[J].西安公路交通大学报,1997(4):31-34.
[3] 方灵毅. 锚索锈蚀检测技术研究[D]. 重庆: 重庆交通大学,2010.
[4] 程良奎,韩 军,张培文. 岩土锚固工程的长期性能与安全评价[J]. 岩石力学与工程学报, 2008, 27(5):865-872.
[5] CHAKRAVORTY M, FRANGOPOL D M, MOSHER R L, et al. Time-dependent Reliability of Rock-anchored Structures[J]. Reliability Engineering & System Safety, 1995, 47(3): 231-236.
[6] 左晓宝,邱林峰,汤玉娟,等. 氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程[J]. 建筑材料学报,2017,20(3):352-358.
[7] 李富民,刘贞国,陆 荣,等. 硫酸盐腐蚀锚索结构锚固性能退化规律试验研究[J]. 岩石力学与工程学报, 2015, 34(8):1581-1593.
[8] HENRIQUES T, REGUENGOS A, PROENÇA L, et al. A Voltammetric Study on the Corrosion of Prestressed Steel in Saturated Ca(OH)2 Solution Containing Chloride Ions[J]. Journal of Applied Electrochemistry, 2010, 40(1): 99-107.
[9] 朱杰兵,李 聪,刘智俊,等. 腐蚀环境下预应力锚筋损伤试验研究[J]. 岩石力学与工程学报, 2017, 36(7):1579-1587.
[10]RAHMAN M S, DIVI S, CHANDRA D, et al. Effect of Different Salts on the Corrosion Properties of Friction Type A607 Steel Rock Bolt in Simulated Concentrated Water[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 665-673.
[11]WU S, CHEN H, CRAIG P,et al. An Experimental Framework for Simulating Stress Corrosion Cracking in Cable Bolts[J]. Tunnelling and Underground Space Technology, 2018, 76: 121-132.
[12]CRAIG P, SAYDAM S, HAGAN P, et al. Investigations into the Corrosive Environments Contributing to Premature Failure of Australian Coal Mine Rock Bolts[J]. International Journal of Mining Science and Technology, 2016, 26(1):59-64.
[13]VILLALBA E, ATRENS A. Metallurgical Aspectsof Rock Bolt Stress Corrosion Cracking[J]. Materials Science and Engineering: A, 2008, 491(1/2):8-18.
[14]TITTARELLI F, BELLEZZE T. Investigation of the Major Reduction Reaction Occurring during the Passivation[J]. Corrosion Science, 2010, 52(3): 978-983.
[15]FENG X, TANG Y, ZUO Y. Influence of Stresson Passive Behaviour of Steel Bars in Concrete Pore Solution[J]. Corrosion Science, 2011, 53(4):1304-1311.
[16]ISGOR B O.Modeling Corrosion of Steel In Concrete[M]//Corrosion of Steel in Concrete Structures. Sawston: Woodhead Publishing, 2016: 249-267.
[17]姬永生,申建立,王 磊,等. 混凝土中钢筋锈蚀过程非氧扩散控制的试验研究[J].湖南大学学报(自然科学版),2012, 39(3):11-16.
[18]ZHAO Y, KARIMI A R, WONG H S, et al. Comparison on Uniform and Non-uniform Corrosion Induced Damage in Reinforced Concrete Based on a Gaussian Description of the Corrosion Layer[J]. Corrosion Science, 2011, 53(9): 2803-2814.
[19]POURSAEE A, HANSSON C M. Reinforcing Steel Passivationin Mortar and Pore Solution[J]. Cement and Concrete Research, 2007, 37(7): 1127-1133.
[20]ASTM G-59, Annual Book of ASTM Standards[S]. Englewood: IHS, 2003.
[21]李久青,杜翠薇. 腐蚀试验方法及监测技术[M]. 北京:中国石化出版社,2007.
[22]姬永生,王志龙,徐从宇,等. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. 浙江大学学报(工学版),2012, 46(8):1457-1464.
[23]CHANDRA D, DAEMEN J J K. Sub-surface Corrosion Research on Rock Bolt System, Perforated SS Sheets and Steel Sets for the Yucca Mountain Repository: Quarterly Technical Report No.9[R]. Nevada: University of Nevada, Las Vegas, 2006.
[24]MILLARD S G, LAW D, BUNGEY J H,et al. Environmental Influences on Linear Polarization Corrosion Rate Measurement in Reinforced Concrete[J]. NDT & E International, 2001, 34(6): 409-417.
基金
江苏省研究生科研创新计划项目(KYCX18_0565);中央高校基本科研业务费专项(2018B663X14);国家自然科学基金项目(41877280,41672320)