新疆奎屯河流域是我国地下水受砷影响较为严重的一个区域,为了查明该区地下水中砷的空间分布特征及砷含量异常的原因,于2017年在研究区采集地表水、潜水和承压水样品51组,2019年在典型高砷区采集承压水样品16组,2个钻孔沉积物样品45组。通过地下水及沉积物的测试分析、数理统计等方法对研究区高砷地下水的空间分布特征及砷含量异常的影响因素进行分析,结果表明:水平方向上,砷浓度从南向北逐渐升高,与海拔呈负相关;垂直方向上,高砷地下水主要分布在>80 m深层含水层中。地下水中砷含量空间分布与古地理环境、地形地貌、封闭的地质、干旱的气候等自然地理条件有关;地下水砷含量分布异常主要有3个原因,即高pH值、高HCO3-、低Eh的地下水环境,沉积物的粒径、色度、局部沉积环境,施用含砷农药、化肥的人为活动。研究成果可为奎屯河流域地下水砷富集机制的研究奠定基础。
Abstract
Kuitun River Basin in Xinjiang is an area where groundwater is seriously affected by arsenic. To find out the spatial distribution characteristics of arsenic in groundwater and the causes of abnormal arsenic content in the area, we collected 51 groups of surface water, underflow and confined groundwater samples in the study area in 2017, 16 groups of confined groundwater samples and 45 groups of borehole sediment samples in typical high-arsenic-content area in 2019. By test analysis and mathematical statistical analysis on the groundwater and sediment samples, we obtained the spatial distribution characteristics of high-arsenic groundwater in the study area and the influencing factors of abnormal arsenic content. Results manifest that in horizontal direction, arsenic concentration is correlated negatively with topography, increasing gradually from south to north; in vertical direction, high-arsenic groundwater is mainly distributed in aquifers greater than 80 meters deep. The spatial distribution of arsenic content in groundwater is related to natural geographical conditions such as paleogeographic environment, topography, closed geology, and arid climate. The causes of abnormal arsenic content in groundwater are concluded as: groundwater environment with high pH value, high HCO-3 concentration and low Eh; particle size, chromaticity, and local deposition environment of sediments; and human activities using arsenic-containing pesticides and fertilizers.
关键词
水化学环境 /
砷 /
空间分布 /
影响因素 /
奎屯河流域
Key words
hydrochemistry environment /
arsenic /
spatial distribution /
influence factors /
Kuitun River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王 振. 青海贵德盆地高砷地下水分布于成因研究[D]. 北京:中国地质大学,2019.
[2] BRAMMER H, RAVENSCROFT P. Arsenic in Groundwater: A Therat to Sustainable Agriculture in South and Southeast Asia[J]. Environment International, 2009, 35(3): 647-654
[3] 韩双宝, 张福存, 张 徽, 等. 中国北方高砷地下水分布特征及其成因分析[J]. 中国地质, 2010, 37(3): 747-753.
[4] 郭华明, 郭 琦, 贾永峰, 等.中国不同区域高砷地下水化学特征及其形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-95.
[5] YANG Zong-lin, PENG Han-yong, LU Xiu-fen, et al. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens[J]. Environmental Science & Technology, 2016, 50(13): 6737-6743.
[6] 王连方,刘鸿德,徐训风,等.新疆奎屯垦区慢性地方性砷中毒调查报告[J].中国地方病学杂志,1983(2):71-71.
[7] 洪 里. 新疆奎屯北部车排子地区高氟、高砷水的病害与形成环境的初步研究[J]. 新疆环境保护, 1983, 10(1): 22-28.
[8] 李 巧, 周殷竹, 周金龙, 等.新疆车排子镇高砷地下水调查成果初报[J]. 地质论评, 2013, 59(增刊):1071-1072.
[9] SEYED K G, ATA S, BEHZAD M, et al. Hydrogeochemistry, Circulation Path and Arsenic Distribution in Tahlab Aquifer, East of Taftan Volcano, SE Iran[J]. Applied Geochemistry, 2020(119): 1-5.
[10]WANG Y, LI J, MA T, et al. Genesis of Geogenic Contaminated Groundwater: As, F and I[J]. Critical Reviews in Environmental Science And Technology, doi: 10.1080/10643389.2020.1807452
[11]QUICKSALL A N,BOSTICK B C,SAMPSON M. Linking Organic Matter Deposition and Iron Mineral Transformations to Groundwater Arsenic Levels in the Mekong Delta,Cambodia[J]. Applied Geochemistry,2008,23:3088-3098.
[12]汤 洁, 卞建民, 李昭阳, 等.中国饮水型砷中毒区的水化学环境与砷中毒关系[J]. 生态毒理学报,2013,8(2): 222-229.
[13]MCARTHUR J M, NATH B, BANERJEE D M, et al. Palaeosol Control on Groundwater Flow and Pollutant Distribution: The Example of Arsenic[J]. Environmental Science & Technology, 2011, 45(4): 1376-1383.
[14]罗艳丽, 李 晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析[J]. 环境科学学报,2017,37(8): 1-3.
[15]李 巧, 周金龙, 曾妍妍, 等. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响[J]. 环境化学,2017,36(10): 1-8.
[16]尤平达, 王 智, 巴 新, 等. 新疆维吾尔自治区乌苏市地下水资源开发利用规划报告[R]. 乌鲁木齐:新疆水文水资源局,1998:12-30.
[17]HL/T 164—2004,地下水环境监测技术规范[S]. 北京:中国环境科学出版社,2004.
[18]SMEDLEY P L,KINNIBURGH D G.A Review of the Source Behavior and Distribution of Arsenic in Natural Waters[J].Applied Geochemistry,2002,17(5):517-568.
[19]WANG Wen-ke, DUAN Lei, YANG Xiao-ting, et al. Shallow Groundwater Hydrochemical Evolution and Simulation with Special Focus on Guanzhong Basin, China[J]. Environmental Engineering and Management Journal, 2013, 12(7): 1447-1455.
[20]张 迪. 原位高砷地下水环境下铁氧化物矿物吸附态砷的释放特征及机理[D]. 北京:中国地质大学,2018.
[21]鲁宗杰,邓娅敏,杜 尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义[J]. 地球科学,2017,42(5): 772-779.
[22]秦艳艳, 王耀辉, 朱 宇, 等. 低电压电解模拟高砷地下水中 As(Ⅲ)的转化研究[J]. 环境科学与技术,2015,38(7):112-118.
[23]张昌延, 何江涛, 张小文, 等. 珠江三角洲高砷地下水赋存环境特征及成因分析[J]. 环境科学, 2018, 39(8): 3631-3638.
[24]郭华明, 王焰新, 李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003,24(4):60-67.
[25]汤 洁, 卞建民, 李昭阳, 等. 吉林省饮水型砷中毒区地下水砷的分布规律与成因研究[J]. 地学前缘,2014,21(4): 30-36.
[26]马 杰. 砷在含水介质中迁移转化的胶体效应[D]. 北京:中国地质大学,2016.
[27]段艳华, 甘义群, 郭欣欣, 等. 江汉平原高砷地下水检测场水化学特征及砷富集影响因素分析[J]. 地质科技情报,2014,33(2):4-8.
[28]郭华明,倪 萍,贾永锋,等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘,2014,21(4):1-12.
[29]李 晶. 砷在新疆奎屯地下水中的分布及在农田土壤中的迁移[D]. 乌鲁木齐:新疆农业大学, 2016.
[30]刘小诗, 李莲芳, 曾希柏, 等. 典型农业土壤重金属的累积特征与源解析[J]. 核农学报, 2014, 28(7): 1288-1297.
基金
国家自然科学基金项目(41762018);新疆维吾尔自治区自然科学基金青年基金项目(2016D01B024);“天山青年计划”青年博士科技人才培养项目(2020Q079);2020年度新疆农业大学大学生创新项目