室内水泥土标准试验与现场水泥土搅拌桩在养护温度和成桩工艺方面存在较大差异,导致室内水泥土抗压强度难以合理反映现场水泥土搅拌桩抗压强度。为此引入等效龄期理论和调整系数分别反映不同温度历程和成桩工艺对现场水泥土搅拌桩抗压强度的影响,从而建立考虑养护温度的水泥土搅拌桩强度模型。首先在室内开展了5、20、40 ℃ 3种不同养护温度的水泥土抗压强度试验;然后采用最小二乘法估计了水泥土活化能,并采用优化算法辨识了水泥土抗压强度模型参数;最后基于典型水闸工程地基温度和桩身强度检测值,识别了该模型的调整系数。分析表明,同龄期水泥土抗压强度随养护温度的增加而增加;成桩工艺差异对水泥土强度影响较大;新模型能较好地反映水泥土搅拌桩强度的发展规律。
Abstract
In-situ cement-soil mixing pile differs markedly from laboratory cement-soil standard test in terms of curing temperature and pile forming technology, making it difficult to reasonably reflect the compressive strength of cement-soil mixing pile on site. In view of this, we established a strength model for cement-soil mixing pile which considers the curing temperature by introducing the equivalent age theory and the adjustment coefficient to reflect respectively the influences of temperature history and pile forming technology. First of all we conducted compressive strength test on cement-soil under three different curing temperatures (5 °C, 20 °C, and 40 °C). We further estimated the activation energy of cement-soil by the least square method and identified the parameters of the compressive strength model using the optimization algorithm. Finally, we obtained the adjustment coefficient of the model based on the foundation temperature and the detected strength of the cement-soil mixing pile in a typical sluice project. Results implied that the compressive strength of cement-soil at the same age augmented with the rising of curing temperature. Pile forming technology has remarkable impact on the strength of cement-soil. The present model well reflects the development law of the strength of cement-soil mixing piles.
关键词
水泥土搅拌桩 /
养护温度 /
等效龄期 /
无侧限抗压强度 /
调整系数
Key words
cement-soil mixing pile /
curing temperature /
equivalent age /
unconfined compressive strength /
adjustment coefficient
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘松玉, 席培胜, 储海岩, 等. 双向水泥土搅拌桩加固软土地基试验研究[J]. 岩土力学, 2007, 28(3): 560-565.
[2] JONGPRADIST P,JUMLONGRACH N,YOUWAI S,et al. Influence of Fly Ash on Unconfined Compressive Strength of Cement-admixed Clay at High Water Content[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 49-58.
[3] 王 嵛, 黄耀英, 方国宝, 等. 洞庭湖区掺粉煤灰水泥土性能试验研究[J]. 水资源与水工程学报, 2019, 30(4): 210-216.
[4] 胡汉兵, 胡胜刚, 刘 芳. 粉细砂水泥土力学与渗透特性试验研究[J]. 长江科学院院报, 2013, 30(10): 48-53.
[5] 王贤昆, 庞建勇, 王 强. 复合水泥土无侧限抗压强度正交试验研究[J]. 长江科学院院报, 2015, 32(12): 72-75.
[6] 曹智国, 章定文. 水泥土无侧限抗压强度表征参数研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3446-3454.
[7] 储诚富, 洪振舜, 刘松玉, 等. 用似水灰比对水泥土无侧限抗压强度的预测[J]. 岩土力学, 2005, 26(4): 645-649.
[8] 汤怡新, 刘汉龙, 朱 伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.
[9] JGJ/T 233-2011,水泥土配合比设计规程[S]. 北京: 中国建筑工业出版社, 2011.
[10] YUN J M, SONG Y S, LEE J H,et al. Strength Characteristics of the Cement-stabilized Surface Layer in Dredged and Reclaimed Marine Clay, Korea[J]. Marine Georesources & Geotechnology, 2006, 24(1): 29-45.
[11] WANG D X, ZENTAR R, ABRIAK N E. Temperature-accelerated Strength Development in Stabilized Marine Soils as Road Construction Materials[J]. Journal of Materials in Civil Engineering, 2017, 29(5): 04016281.
[12] 王许诺, 杨 平, 鲍俊安, 等. 冻结水泥土无侧限抗压试验研究[J].水文地质工程地质, 2013, 40(3): 79-83.
[13] 胡 昕, 闵紫超, 洪宝宁. 温度变化对水泥土强度特性和破坏形状的影响[J]. 防灾减灾工程学报, 2007, 27(3): 339-343.
[14] 张弘怀. 土层和温度变化对湿喷桩及其复合地基影响的研究[D]. 南京:河海大学, 2005.
[15] 陈 甦, 彭建忠, 韩静云, 等. 水泥土强度的试件形状和尺寸效应试验研究[J]. 岩土工程学报, 2002, 24(5): 580-583.
[16] 林 彤. 粉体喷射搅拌桩桩身质量分析研究[J]. 长江科学院院报, 2003,20(1): 23-25,32.
[17] CHITAMBIRA B, AL-TABBAA A, PERERA A S R,et al. The Activation Energy of Stabilised/Solidified Contaminated Soils[J]. Journal of Hazardous Materials, 2007, 141: 422-429.
[18] BEARCE R G,MOONEY M A.Seismic Modulus Maturity Function for Lime and Lime-Cement Stabilized Clay[J]. Journal of Materials in Civil Engineering, 2016, 28(3): 04015150.
[19] ZHANG R J,LU Y T,TAN T S,et al.Long-term Effect of Curing Temperature on the Strength Behavior of Cement-stabilized Clay[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(8):04014045.
[20] FREIESLEBEN H P, PEDERSEN E J. Maturity Computer for Controlled Curing and Hardening of Concrete Strength[J]. Nordisk Betong, 1997,19(1):19-34.
[21] 祝小靓,蔡跃波,丁建彤,等.掺合料对抗冲磨混凝土活化能的影响研究[J]. 混凝土, 2017, 335(9): 69-72.
[22] 李雪峰, 王华牢, 刁 波. 基于实测表面活化能的高原地区混凝土受冻临界强度预测[J]. 农业工程学报, 2018, 34(8): 117-123.
[23] 祝小靓, 丁建彤, 蔡跃波, 等. 基于温度-应力试验的自生体积变形计算起点的研究[J]. 水利学报, 2017, 48(2): 210-216+225.
[24] WANG J C, YAN P Y, YU H F. Apparent Activation Energy of Concrete in Early Age Determined by Adiabatic Test[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2007, 22(3): 537-541.
[25] 朱伯芳. 混凝土热学力学性能随龄期变化的组合指数公式[J]. 水利学报, 2011, 42(1): 1-7.
[26] JGJ 340—2015,建筑地基检测技术规范[S]. 北京: 中国建筑工业出版社, 2015.
基金
国家自然科学基金项目(51779130);国家重点研发计划项目(2018YFC0407103);三峡大学硕士学位论文培优基金项目(2020SSPY006)