为提高地下水源热泵效率,避免在回灌与抽水过程中发生热贯通,研究地下水源热泵系统井群的合理布置形式。基于COMSOL Multiphysics软件,建立地下水源热泵抽灌系统的三维模型,模拟抽灌井在对齐型、交错型和叉排型3种不同布置形式以及不同井距下抽水井水温变化情况,根据热贯通发生的程度,选取井群布置的最优形式。结果表明:无论井距如何变化,中心井温度变化始终最大且最明显,即所受热贯通影响最大;在相同的布置形式下,抽灌井之间距离越大,抽水井水温变化幅度越小,发生热贯通的程度越轻;在系统运行期间抽灌井采用对齐型布置方式时,热贯通发生时间最晚且影响最小,且井距取100 m时在2种工况下4号井水温变化均为0.03 K,5号井分别升高0.07 K和降低0.06 K,6号井则分别升高0.02 K和降低0.03 K,故采用100 m为宜。
Abstract
The reasonable layout of well group for ground-source heat pump system is studied in the purpose of improving the efficiency of ground-source heat pump and in the meantime avoiding heat penetration during refilling and pumping. A 3D model of the pumping and recharging system for ground-source heat pump is established using COMSOL Multiphysics software to simulate the water temperature in wells of three different layouts (aligned, staggered, and cross-row layouts) with different well spacings. The optimal layout of well group is selected according to the degree of heat penetration. Results demonstrate that: no matter how the well spacing changes, the temperature in the central well changes the most drastic, subject the most to thermal penetration; in the same layout, a wider spacing between pumping wells results in a smaller change of water temperature and a slighter heat penetration. When the pumping and recharging wells are arranged in alignment, heat penetration during the operation of the system occurs the latest with the least impact. When the well spacing is 100 m, the water temperature of well No.4 under both working conditions changed by 0.03 K, whereas that in well No.5 climbed by 0.07 K and dropped by 0.06 K respectively in the two working conditions, and well No.6 raise by 0.02 K and fell by 0.03 K, respectively. In conclusion, a spacing of 100m is recommended to be the optimal.
关键词
地下水源热泵 /
抽灌系统 /
热贯通 /
优化布置 /
数值模拟
Key words
ground-source heat pump /
pumping and recharging system /
heat penetration /
optimal layout /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡继华, 张延军, 于子望,等. 水源热泵系统中地下水流贯通及其对温度场的影响[J]. 吉林大学学报(地球科学版), 2008,38(6):992-998.
[2] 赖光东, 从 辉, 周维博,等. 常温注水井对含水层热贯通的影响机理分析[J]. 水电能源科学, 2018,36(6):137-140.
[3] 丛晓春, 杨文裴. 地下承压含水层水-热运移特性的模拟研究[J]. 太阳能学报, 2008,29(11):1390-1394.
[4] 赖光东, 周维博, 姚炳光. 西安地区浅层承压水水源热泵适宜性评价[J]. 长江科学院院报, 2017,34(12):22-27.
[5] 李凤昱, 徐天福, 封官宏,等. T2Wel单井地下水源热泵水-热耦合数值模拟研究[J].太阳能学报, 2020,41(4):278-286.
[6] 李 旻, 刁乃仁, 方肇洪. 单井回灌地源热泵地下传热数值模型研究[J]. 太阳能学报, 2007,28(12):1394-1401.
[7] 宋 伟, 倪 龙, 姚 杨. 单井循环系统在不同初始地温下的特性[J]. 哈尔滨工程大学学报, 2014,35(3):342-346.
[8] 宋 伟, 倪 龙, 姚 杨. 单井循环地下水源热泵换热特性CFD模拟与验证[J]. 农业工程学报, 2015,31(24):201-206.
[9] BEIER R A. Thermal Response Tests on Deep Borehole Heat Exchangers with Geothermal Gradient[J]. Applied Thermal Engineering, 2020,178: 115447.
[10] RUSSOL S L, TADDIAL G, ABDIN E C. Modeling the Effects of the Variability of Temperature-related Dynamic Viscosity on the Thermal-affected Zone of Groundwater Heat-pump Systems[J]. Hydrogeology Journal,2018, 26: 1239-1247.
[11] POPHILLATA W, ATTARDA G, BAYERB P, et al. Analytical Solutions for Predicting Thermal Plumes of Groundwater Heat Pump Systems[J]. Renewable Energy, 2020, 147: 2696-2707.
[12] POPHILLATA W, BAYERB P, TEYSSIER E, et al. Impact of Groundwater Heat Pump Systems on Subsurface Temperature under Variable Advection, Conduction and Dispersion[J]. Geothermics,2020, 83: 101721.
[13] CUI X Z,LIU Q S,ZHANG C Y,et al. Land Subsidence Due to Groundwater Pumping and Recharge: Considering the Particle-deposition Effect in Ground-source Heat-pump Engineering[J].Hydrogeology Journal,2018,4:1723-1736.
[14] BO C, NING L, RUIHUA Z. Finite Element Analysis of Fully Coupled Thermo-Hydro-Mechanic Behavior of Porous Media[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4):467-472.
[15] HOCHMUTH D P, SUNADA D K. Ground-water Model of Two-phase Immiscible Flow in Coarse Material[J]. Groundwater, 1985, 23(5): 617-626.
[16] LI Y, HE Z Z, YAN G H, et al. Excavation Dewatering and Ground Subsidence in Dual Structural Stratum of Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Supp.1): 767-772.
[17] RUPP D E, SELKER J S. On the Use of the Boussinesq Equation for Interpreting Recession Hydrographs from Sloping Aquifers[J]. Water Resource Research, 2006, 42(12): W12421.
[18] XU P, YU B. Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry[J]. Advances in Water Resource, 2008, 31(1): 74-81.
[19] ZHANG Y, WEI J, WANG G. Impact of Regional Groundwater Flow on Geological Temperature Field with Energy Abstraction from the Aquifer[J]. Journal of Tsinghua University, 2006, 46(9): 1518.
[20] SERRANO S E, WORKMAN S R. Modeling Transient Stream/Aquifer Interaction with the Non-linear Boussinesq Equation and Its Analytical Solution[J]. Hydrology, 1998, 206(3/4):245-255.
[21] SERRANO S E. Analytical Solutions of the Nonlinear Groundwater Flow Equation in Unconfined Aquifers and the Effect of Heterogeneity[J]. Water Resource Research, 1995, 31(11): 2733-2742.
[22] RAO D, BAI B. Study of the Factors Influencing Diffusive Tortuosity Based on Pore-Scale SPH Simulation of Granular Soil[J]. Transport in Porous Media, 2020, 132(2): 333-353.
[23] RAO D Y, BAI B. Study on the Factors Affecting Dispersity of Porous Media by SPH Simulation in Solute Transport[J]. Journal of Hydraulic Engineering, 2019, 50(7): 824-834.
[24] 陈响亮. 抽灌井群热交互性及其布控特性研究[D]. 长春: 吉林大学, 2011.
基金
国家自然科学基金项目(41702254); 湖北省自然科学基金项目(2018CFB613); 长江科学院开放研究基金项目(CKWV2019768/KY);湖北省高等学校优秀中青年科技创新团队计划项目(T2020005)