芦苇不同部位作为碳源对人工湿地脱氮除磷效果的影响

王文琴, 刘霄, 贾柠, 王子文, 张艳

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (11) : 25-30.

PDF(1556 KB)
PDF(1556 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (11) : 25-30. DOI: 10.11988/ckyyb.20200813
水环境与水生态

芦苇不同部位作为碳源对人工湿地脱氮除磷效果的影响

  • 王文琴, 刘霄, 贾柠, 王子文, 张艳
作者信息 +

Effect of Adding Different Parts of Reed as Plant Carbon Source on Nitrogen and Phosphorous Removal in Constructed Wetland

  • WANG Wen-qin, LIU Xiao, JIA Ning, WANG Zi-wen, ZHANG Yan
Author information +
文章历史 +

摘要

针对人工湿地中有机碳源不足造成脱氮效率较差的问题,寻找更高效的植物碳源以改善人工湿地内部碳氮比低的状况。通过试验比较芦苇穗(芦穗)、芦苇茎(芦茎)和芦苇根(芦根)3个部位在不同预处理方式下的静态释放规律,筛选出最佳的植物碳源,并通过小试人工湿地试验分析其作为植物碳源对脱氮效果的影响。分析结果表明:碱热处理能够提高COD释放量,相较其它预处理方式,其最大COD释放浓度提高10%,并提前释放一部分氮类化合物和含磷化合物;芦穗碱热处理初期COD释放量达到各部位中的最高值182.00 mg/L;从144 h内的平均TN释放量来看,芦穗碱热处理(6.16 mg/L)>芦根碱热处理(4.21 mg/L)>芦茎碱热处理(2.99 mg/L),芦茎释放量最少,比芦穗少一半以上;经过碱泡、碱热处理后,TN、TP、NH+4-N、NO-3-N和NO-2-N释放量均小于简单处理。碱热处理后的芦苇茎是最佳植物碳源,具有较强的持续释碳能力,并且对氮、磷积累的影响最小;在小试人工湿地系统中添加碱热处理后的芦茎在不显著提高系统出水COD前提下,显著提高了TN和TP的去除率,相对对照组分别提高了61.14%和32.53%,达到同步强化脱氮除磷的效果。

Abstract

The lack of organic carbon in constructed wetlands leads to low efficiency of nitrogen removal. The aim of this research is to find a more efficient plant carbon source to improve the C/N ratio in constructed wetland. The optimum plant carbon source was selected according to the static carbon release of the fringe of reed, stem of reed and root of reed subject to different pretreatments, and the effect of plant carbon source on nitrogen removal was analysed by bench-scale constructed wetland experiment. Compared with other pretreatment methods, alkali-heat treatment (AHT) could boost Chemical Oxygen demand(COD) release by 10%, and release some nitrogen and phosphorus compounds ahead of time; the highest COD release of fringe of reed reached 182.00 mg/L in the early stage of AHT. Moreover, the average TN release in 144 hours of fringe of reed after AHT (6.16 mg/L) was larger than those of root of reed after AHT (4.21 mg/L) and stem of reed after AHT (2.99 mg/L) in sequence. The TN release of stem of reed was the smallest, more than half smaller than that of fringe. The releases of TN, TP, NH+4-N, NO-3-N and NO-2-N of reed treated by alkali soaking and AHT were all smaller than those by simple treatment.Alkali-heat treated stem of reed has strong persistent carbon releasing capability and minimal impact on nitrogen and phosphorus accumulation, hence was chosen as the optimum plant carbon source. By adding alkali-heat treated stem of reed, the denitrification and dephosphorization capabilities of constructed wetland both enhanced markedly in the meantime of increasing inconspicuously the COD in system effluent. The average removing rates of TN and TP augmented by 61.14% and 32.53%, respectively, compared with those of control group.

关键词

植物碳源 / 脱氮 / 芦苇 / 化学需氧量(COD) / 人工湿地 / 碱热处理 / 反硝化

Key words

plant carbon source / nitrogen removal / Chemical Oxygen demand(COD) / constructed wetland / alkali-heat treatment / denitrification

引用本文

导出引用
王文琴, 刘霄, 贾柠, 王子文, 张艳. 芦苇不同部位作为碳源对人工湿地脱氮除磷效果的影响[J]. 长江科学院院报. 2021, 38(11): 25-30 https://doi.org/10.11988/ckyyb.20200813
WANG Wen-qin, LIU Xiao, JIA Ning, WANG Zi-wen, ZHANG Yan. Effect of Adding Different Parts of Reed as Plant Carbon Source on Nitrogen and Phosphorous Removal in Constructed Wetland[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(11): 25-30 https://doi.org/10.11988/ckyyb.20200813
中图分类号: X703   

参考文献

[1] 丁 怡, 宋新山, 严登华. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646-1652.
[2] 卢少勇, 金相灿, 余 刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8): 2670-2677.
[3] KIVAISI A K. The Potential for Constructed Wetlands for Wastewater Treatment and Reuse in Developing Countries: A Review[J]. Ecological Engineering, 2001, 16(4): 545-560.
[4] 黄锦楼, 陈 琴, 许连煌. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408.
[5] 曹笑笑, 吕宪国, 张仲胜,等. 人工湿地设计研究进展[J]. 湿地科学, 2013, 11(1): 121-128.
[6] HE Y, WANG Y, SONG X.High-effective Denitrification of Low C/N Wastewater by Combined Constructed Wetland and Biofilm-electrode Reactor (CW-BER)[J]. Bioresource Technology, 2015, 203: 245-251.
[7] SHEN Z, ZHOU Y, LIU J, et al. Enhanced Removal of Nitrate Using Starch/PCL Blends as Solid Carbon Source in a Constructed Wetland[J]. Bioresource Technology, 2015, 175: 239-244.
[8] SHEN Z, ZHOU Y, WANG J.Comparison of Denitrification Performance and Microbial Diversity Using Starch/Polylactic Acid Blends and Ethanol as Electron Donor for Nitrate Removal[J]. Bioresource Technology, 2013, 131: 33-39.
[9] 周卿伟,祝 惠,阎百兴,等.添加填料的人工湿地反硝化过程研究[J].湿地科学,2017,15(4):588-594.
[10]JIANG L, WU A, FANG D,et al. Denitrification Performance and Microbial Diversity Using Starch-Polycaprolactone Blends as External Solid Carbon Source and Biofilm Carriers for Advanced Treatment[J]. Chemosphere, 2020, 255: 126901.
[11]WEN Y, CHEN Y, ZHENG N, et al. Effects of Plant Biomass on Nitrate Removal and Transformation of Carbon Sources in Subsurface-flow Constructed Wetlands[J]. Bioresource Technology, 2010, 101: 7286-7292.
[12]ZHANG C, YIN Q, WEN Y,et al. Enhanced Nitrate Removal in Self-supplying Carbon Source Constructed Wetlands Treating Secondary Effluent: The Roles of Plants and Plant Fermentation Broth[J]. Ecological Engineering, 2016, 91: 310-316.
[13]JIA L,WANG R,FENG L,et al. Intensified Nitrogen Removal in Intermittently-aerated Vertical Flow Constructed Wetlands with Agricultural Biomass:Effect of Influent C/N Ratios[J].Chemical Engineering Journal,2018,345:28-30.
[14]WU S, GAO L, GU J,et al. Enhancement of Nitrogen Removal via Addition of Cattail Litter in Surface Flow Constructed Wetland[J]. Journal of Cleaner Production, 2018, 204: 205-211.
[15]FU G, HUANG SL, GUO Z,et al. Effect of Plant-Based Carbon Sources on Denitrifying Microorganisms in a Vertical Flow Constructed Wetland[J]. Bioresource Technology, 2017, 224: 214-221.
[16]LI M, SUN L, SONG X.Adding Maize Cobs to Vertical Subsurface Flow Constructed Wetlands Treating Marine Recirculating Aquaculture System Effluents: Carbon Releasing Kinetics and Intensified Nitrogen Removal[J]. Bioresource Technology, 2019, 274: 267-271.
[17]熊家晴, 卢学斌,郑于聪,等. 不同香蒲预处理方式对水平潜流人工湿地脱氮的强化效果[J]. 环境科学, 2019, 40(10): 4562-4568.
[18]赵文莉, 郝瑞霞, 李 斌,等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3): 987-994.
[19]马兴冠, 赵秋菊, 江 涛. 人工湿地植物外加碳源的预处理研究[J]. 水处理技术, 2015, 41(7): 26-44.
[20]孙琳琳, 宋协法, 李 甍,等. 外加植物碳源对人工湿地处理海水循环水养殖尾水脱氮性能的影响[J]. 环境工程学报, 2019, 13(6): 1382-1390.
[21]熊家晴, 孙建民, 郑于聪,等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018, 38(9): 41-44.
[22]向 衡,韩 芸,刘 琳,等.用于河道水反硝化脱氮补充碳源选择研究[J].水处理技术,2013,39(5):64-68.
[23]柳新伟. 温度对芦苇不同部位分解动态的影响[J].生态环境学报,2009, 18(3): 1042-1044.
[24]国家环境保护总局. 水和废水监测分析方法[M].4版. 北京:中国环境科学出版社, 2002.
[25]MARTINEZ N B,TEJEDA A,TORO A D, et al. Nitrogen Removal in Pilot-scale Partially Saturated Vertical Wetlands with and Without an Internal Source of Carbon[J]. Science of the Total Environment, 2018, 645: 524-532.
[26]PAUL S, DUTTA A. Challenges and Opportunities of Lignocellulosic Biomass for Anaerobic Digestion[J]. Resource, Conservation and Recycling, 2018, 130: 164-174.
[27]LYU W, HUANG L ,XIAO G, et al. Effects of Carbon Sources and COD/N Ratio on N2O Emissions in Subsurface Flow Constructed Wetlands[J]. Bioresource Technology, 2017, 245: 171-181.
[28]YANG H, CHEN X ,TANG J, et al. External Carbon Addition Increases Nitrate Removal and Decreases Nitrous Oxide Emission in a Restored Wetland[J]. Ecological Engineering, 2019, 138: 200-208.
[29]TANNER C C, CLAYTON J S , UPSDELL M P. Effect of Loading Rate and Planting on Treatment of Dairy Farm Wastewaters in Constructed Wetlands II. Removal of Nitrogen and Phosphorus[J]. Water Research, 1995, 29(1): 27-34.

基金

天津市教委科研计划项目(2019KJ153)

PDF(1556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/