受环境变化的影响,时间序列的非一致性已对干旱频率分析造成越来越多的影响。针对目前干旱频率分析对时间序列“非一致性”考虑不足的问题,提出通过对时间序列的变异诊断、分时段干旱特征变量提取、Copula联合分布函数构建等过程,对水文变异条件下的非一致性干旱频率进行分析。以鄱阳湖为研究对象,采用非一致性干旱频率计算方法对湖口站1955—2015年的水位序列进行分析。结果显示:湖口站水位序列于2003年出现了跳跃向下的变异,水位变异后的干旱历时和干旱烈度比变异前均有所增大,同频率干旱事件的重现期存在较大幅度的缩减。鄱阳湖区有关水资源管理部门应尽快对干旱应对措施作出相应的调整,以适应水文变异带来的挑战。
Abstract
Affected by the changing environment, the inconsistency of time series has posed increasing impact on drought frequency analysis, which, however, lacks consideration of such inconsistency. We propose to analyze drought frequency in consideration of the inconsistency of time series under the circumstance of hydrological alteration by diagnosing the variations of time series, extracting drought variables, and constructing Copula joint distribution function. With the Poyang Lake as the study object, we examine the monthly water level series from 1955 to 2015 of Hukou station by the proposed method. Results manifest that downward alteration of water level series occurred in 2003, after which the drought duration and drought intensity escalated, and the return period of drought events with the same frequency plunged. Water resources management departments in the Poyang Lake area should adjust timely the countermeasures to drought events to respond to the challenges posed by hydrological alteration.
关键词
水文变异 /
非一致性 /
Copula函数 /
干旱频率 /
鄱阳湖
Key words
hydrological alteration /
inconsistency /
Copula function /
drought frequency /
Poyang Lake
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 亮.鄱阳湖平原耕地复种变化及其对粮食产量的影响[D]. 南昌: 江西师范大学, 2018.
[2] 金姝兰,侯立春,徐 磊.长江中下游地区耕地复种指数变化与国家粮食安全[J].中国农学通报,2011(17):208-212.
[3] 战金艳,史娜娜,邓祥征.江西省耕地转移驱动机理[J].地理学报,2010(4): 485-493.
[4] HONG Xing-jun, GUO Sheng-lian, XIONG Li-hua, et al. Spatial and Temporal Analysis of Drought Using Entropy-based Standardized Precipitation Index: A Case Study in Poyang Lake Basin, China[J].Theoretical and Applied Climatology, 2015(122): 543-556.
[5] 许 斌. 变化环境下水资源评价方法不确定性研究[M]. 武汉: 长江出版社, 2016.
[6] HAO Zeng-chao, SINGH V P. Drought Characterization from a Multivariate Perspective: A Review[J]. Journal of Hydrology, 2015(527): 668-678.
[7] 徐翔宇,许 凯,杨大文,等.多变量干旱事件识别与频率计算方法[J].水科学进展,2019,30(3): 373-381.
[8] SHIAU J T. Fitting Drought Duration and Severity with Two-dimensional Copulas[J]. Water Resources Management, 2006, 20(5): 795-815.
[9] MA M, SONG S, REN L,et al. Multivariate Drought Characteristics Using Trivariate Gaussian and Student t Copulas[J]. Hydrological Processes, 2013, 27(8): 1175-1190.
[10] 屈艳萍, 郦建强, 吕 娟, 等. 旱灾风险定量评估总体框架及其关键技术[J]. 水科学进展,2014,25(2): 297-304.
[11] YAN Gui-xia, WU Zhi-yong,LI Deng-hua,et al. A Comparative Frequency Analysis of Three Standardized Drought Indices in the Poyang Lake Basin, China[J]. Natural Hazards, 2018(91): 353-374.
[12] SKLAR A. Fonctions de Répartition à n Dimensions et Leurs Marges[J]. Publications de l’Institut Statistique de l’Université de Paris, 1959(8): 229-231.
[13] AYANTOBO O O. 干旱指标和 Copula 函数在干旱事件多变量频率分析中的应用[D]. 杨凌:西北农林科技大学, 2018.
[14] TSAKIRIS G,KORDALIS N,TIGKAS D,et al. Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas[J].Water Resources Management,2016(30):1-13.
[15] SAGHAFIAN B, MEHDIKHANI H. Drought Characterization Using a New Copula-based Trivariate Approach[J]. Natural Hazards, 2014(72): 1391-1407.
[16] 程 亮,金菊良,郦建强,等.干旱频率分析研究进展[J].水科学进展,2013,24(2):296-302.
[17] 刘拓拓.江西鄱阳湖提前54天进入低水位[EB/OL]. (2016-9-20) [2020-05-22] http://www.xinhuanet.com//politics/2016-09/20/c_129290275.htm.
[18] 谢 平,陈广才,雷红富,等.水文变异诊断系统[J].水力发电学报,2010,29(1):85-91.
[19] 谢 平,陈广才,雷红富.基于Hurst系数的水文变异分析方法[J].应用基础与工程科学学报,2009,17(1):1-82.
[20] 谢 平,许 斌,章树安,等. 变化环境下区域水资源变异问题研究[M]. 北京:科学出版社,2012.
[21] 谢 平,吴子怡,赵江艳,等. 非一致性水文频率计算的基因途径Ⅰ:水文基因遗传、变异和进化原理[J].应用生态学报,2018, 29(4):1023-1032.
[22] 谢 平,赵江艳,吴子怡,等.非一致性水文频率计算的基因途径Ⅱ:水文基因诊断系统与非一致性常规矩基因方法[J].应用生态学报,2018,29(4):1033-1041.
[23] ANA J, DANIEL P, RUBRN Z. A Multivariate Kolmogorov-Smimov Test of Goodness of Fit[J]. Statistics and Probability Letters, 1997, 35: 251-259.
[24] HOSKING J R M. L-moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics[J]. Journal of the Royal Statistical Society (Series B), 1990, 52: 105-124.
[25] 杨志勇,袁 喆,方宏阳,等. 基于Copula函数的滦河流域旱涝组合事件概率特征分析[J]. 水利学报,2013,44(5):556-561.
[26] 许 斌,陈广才. 变化环境下通江湖泊江水倒灌年内分配变化规律研究[J].长江科学院院报,2018,35(10):30-35.
[27] 周玉良,袁潇晨,金菊良,等.基于Copula的区域水文干旱频率分析[J]. 地理科学,2011,31(11):1383-1388.
[28] 中国天气网. 2007年中等干旱[EB/OL]. (2010-05-06) [2020-05-22].http://www.weather.com.cn/drought/ghsj/2007/05/442481.shtml.
[29] 南极圈.直击鄱阳湖干旱前前后后[EB/OL].(2011-06-25)[2020-05-22].http://blog.sina.com.cn/s/blog_71a84c0c0100uz3p.html.
基金
国家自然科学基金项目(51809009,41890822);中央级公益性科研院所基本科研业务费项目(CKSF2019433/SZ)