基于高密度均匀分布的4 280个钻孔资料,结合广州海岸变迁史及14C测年试验成果,深入研究了广州南沙区软土的空间分布特征。并依据成因时代和沉积环境,将南沙软土划分为两大层,其中上层为全新世软土层,14C年龄约为1 500~8 500 a;下层为更新世软土层,14C年龄约为34 000~45 000 a。同时对南沙区软土基本物理力学参数进行了统计和分析,对比研究了上下两层软土工程性质的差异。研究结果表明:南沙软土分布面积约718 km2,占全区总面积的91.6%,平均厚度15~20 m,普遍具有含水量高、孔隙比大、抗剪强度低、压缩性强、渗透性弱等特点;相较于下层软土,上层软土的厚度、含水率、孔隙比、压缩系数更大,抗剪强度更低,粉细砂含量较少。
Abstract
The distribution characteristics of soft clay in Nansha, Guangzhou were examined based on the data of 4 280 boreholes with high density and uniform distribution in association with the coastal history of Guangzhou and 14C test results. According to the genetic age and sedimentary characteristics, the soft clay in Nansha was divided into two layers. The upper layer was formed in Holocene, whose 14C age was 1 500-8 500 years, and the lower layer was formed in Pleistocene, whose 14C age was 34 000-42 000 years. The engineering properties of the two layers were systematically compared via statistical analysis on the physical and mechanical parameters. The research results unveiled that the soft clay in Nansha covers an area of 718 square kilometers, accounting for 91.6% of its total area, with an average thickness of 15-20 m. In general, the soft clay in Nansha is of high water content, large void ratio, low shear strength, strong compressibility and weak permeability. Compared with the lower layer, the upper soft clay has higher thickness, void ratio, pore ratio and compression coefficient, lower shear strength and less fine sand content.
关键词
软土 /
分布特征 /
工程性质 /
成因类型 /
南沙区
Key words
soft clay /
distribution characteristics /
engineering characteristics /
genetic types /
Nansha
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003(1):137-141.
[2] 周翠英,牟春梅.珠江三角洲软土分布及其结构类型划分[J].中山大学学报:自然科学版,2004(6):81-84.
[3] 刘勇健,刘湘秋,刘雅恒,等.珠江三角洲软土物理力学性质对比分析[J].广东工业大学学报,2013,30(3):30-36.
[4] 宋许根,王志勇,柏威伟,等.珠海西部中心城区大面积深厚软土工程特性研究[J].岩石力学与工程学报,2019,38(7):1434-1451.
[5] 龚晓南.软土地区建筑地基工程事故原因分析及对策[C]//中国土木工程学会第九届年会论文集.北京:中国水利水电出版社,2000:255-258.
[6] YIN J H, GRAHAM J. Elastic Visco-plastic Modeling of One-dimensional Consolidation[J]. Geotechnique, 1996, 46(3): 515-527.
[7] 陈凌伟,周小文,龚壁卫,等.沿海软基大砂袋围堰的离心模型试验[J].岩石力学与工程学报, 2016,35(增刊2):4235-4240.
[8] 杨光华,李 俊,贾 恺,等.改进的地基沉降计算的工程方法[J].岩石力学与工程学报, 2017, 36(增刊2): 4229-4234.
[9] 杨光华,黄致兴,李志云,等.考虑侧向变形的软土地基非线性沉降计算的简化法[J].岩土工程学报,2017, 39(9): 1697-1704.
[10] 杨利柯,汪益敏.广州南沙区软土分布特征及处理对策研究[J].路基工程,2016(2):9-13.
[11] 刘勇健,李彰明,伍四明,等.南沙地区软土物理力学性质指标与微结构参数的统计分析[J].广东工业大学学报,2010,27(2):21-26.
[12] 朱鸿鹄,陈晓平,张芳枝,等.南沙软土固结变形特性试验研究[J].工程勘察,2005(1):1-3.
[13] 李建生.广州地区古海岸线的变迁[J].海洋科学,1983(4):14-18.
[14] 罗子声.广州近期的海陆变迁[J].热带地理,1983(2):25-31,61.
基金
广东省重点领域研发计划项目(2020B0101130009);广东省城市感知与监测预警企业重点实验室基金项目(2020B121202019);广州市城市规划勘测设计研究院科技基金项目(RDI2210204140, RDI2210204146)