为探究长江深水航道整治工程生态护岸的植被恢复效果,选取立体网状栅格护岸和格状石笼压载植生垫新型生态护岸及传统抛石护岸工程,运用数量生态学研究方法开展工程区陆生植物群落恢复及分布格局调查。研究结果表明:研究区共有植物19种,以草本植物为主,隶属于12科19属;生态护岸工程区植物种类数量高于传统抛石护岸;沿着河岸带横向梯度,立体网状栅格护岸的生物多样性增大,抛石护岸生物多样性变化较大,格状石笼压载植生垫护岸具有较高的生物多样性;生态护岸工程区植物群落的生物量高于传统抛石护岸区,且生物量和沉积物NH+4-N含量显著正相关(p<0.01);CCA分析表明沉积物中TC和NH+4-N含量对植物群落及物种分布影响较大。综合来看,格状石笼压载植生垫护岸植被恢复效果最好,立体网状栅格护岸次之,传统抛石护岸相对较差;研究区生态护岸的植被恢复还处于动态演替过程,其生态效应有待于长期深入研究。
Abstract
Typical ecological riverbanks, including mesh grid riverbank and lattice gabion ballasted vegetation-mat riverbank, together with traditional riprap riverbank were selected as study areas to explore the effects of vegetation restoration of ecological riverbank in the deep water way regulation for the Yangtze River. The terrestrial vegetation restoration and its distribution pattern in the study areas were investigated by using quantitative ecological research methods. Results revealed 19 plant species in the study areas, mainly herbs, which belonged to 19 genus and 12 families. The number of plant species in ecological riverbanks were higher than that of traditional riprap riverbank. Along the horizontal gradient of riparian, the biodiversity of mesh grid riverbank increased, and that of riprap riverbank changed randomly, while the lattice gabion ballasted vegetation-mat riverbank had relatively higher biodiversity. Moreover, the vegetation biomasses of ecological riverbanks were higher than that of traditional riprap riverbank. The biomasses of vegetation were significantly positively correlated (p<0.01) with the NH4-N content in the sediment. CCA analysis indicated that the distribution patterns of vegetation and species were remarkably affected by the TC and NH4-N content. In summary, lattice gabion ballasted vegetation-mat riverbank has the optimum vegetation restoration effect, followed by mesh grid riverbank and traditional riprap riverbank in sequence. The vegetation restoration of river bank in the study area would evolve in dynamic process, and its ecological effects should be studied in-depth for a long time.
关键词
生态护岸 /
植被恢复 /
数量生态学 /
深水航道 /
整治工程 /
长江
Key words
ecological riverbank /
vegetation restoration /
quantitative ecology /
deep waterway /
regulation project /
Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NILSSON C, BERGGREN K. Alteration of Riparian Ecosystems Caused by River Regulation [J]. BioScience, 2000, 50: 783-792.
[2] WANG Z Y, PEI Y S. Ecological Risk Resulting from Invasive Species: A Lesson from Riparian Wetland Rehabilitation[J]. Procedia Environmental Sciences, 2012, 13: 1798-1808.
[3] PAETZOLD A, YOSHIMURA C, TOCKNER K.Riparian Arthropod Responses to Flow Regulation and River Channelization[J]. Journal of Applied Ecology, 2008, 45(3): 894-903.
[4] 罗利民, 田伟君, 翟金波. 生态交错带理论在生态护岸构建中的应用[J]. 自然生态保护, 2004(11):26-30.
[5] HE Y,WANG P C,SHENG H,et al.Sustainability of Riparian Zones for Non-point Source Pollution Control in Chongming Island:Status,Challenges,and Perspectives[J]. Journal of Cleaner Production,2020,244:118804.
[6] 陈丙法, 黄 蔚, 陈开宁, 等. 河道生态护岸的研究进展[J]. 环境工程, 2018, 36(3): 74-77,168.
[7] 姚仕明, 卢金友. 抛石护岸工程试验研究[J]. 长江科学院院报, 2006, 23(1): 16-19.
[8] 梁开明, 章家恩, 赵本良, 等.河流生态护岸研究进展综述[J]. 热带地理, 2014, 34(1): 116-122,129.
[9] CHEN Y M, XU S D, JIN Y,et al. Evaluation on Ecological Restoration Capability of Revetment in Inland Restricted Channel[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2548-2558.
[10]刘怀汉, 杨胜发, 曹民雄, 等. 长江黄金航道整治技术研究构想与展望[J]. 工程科学与技术, 2017, 49(2): 17-27.
[11]TANG V T, FU D F, BINH T N,et al. An Investigation on Performance and Structure of Ecological Revetment in a Sub-tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam[J]. Water, 2018, 10(5): 636.
[12]王南海, 张文捷, 王 玢. 新型护岸技术:四面六边透水框架群在长江护岸工程中的应用[J]. 长江科学院院报, 1999,16(2): 11-16.
[13]CAI W W, ZHOU Z Y, XIA J H,et al. An Advanced Index of Ecological Integrity (IEI) for Assessing Ecological Efficiency of Restauration Revetments in River Plain[J]. Ecological Indicators, 2020, 108: 105762.
[14]刘川顺, 鲁晓义, 王书法, 等. 湖泊护岸香根草的种植方案及其效应评估[J]. 长江科学院院报, 2017, 34(11): 148-152.
[15]陈晓云. 长江南京以下深水航道治理对策及建设思路研究[J]. 水运工程, 2011(12): 99-105.
[16]徐 元, 龚鸿锋, 张 华. 长江下游福姜沙河段12.5 m水深主航道选汊研究[J]. 水运工程, 2014(5): 1-7.
[17]董 鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997.
[18]张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.
[19]刘尧尧, 辜 彬, 王 丽. 北川震后植被恢复工程植物群落物种多样性及优势种生态位[J]. 生态学杂志, 2019, 38 (2): 309-320.
[20]MARGALEF D R. Information Theory in Ecology[J]. Society for General Systems Research, 1957, 3: 36-71.
[21]SHANNON C E, WEAVER W. The Mathematical Theory of Communication[M]. Urbana: University of Illinois Press, 1949.
[22]PIELOU E C. Ecological Diversity[M]. New York: John Wiley & Sons Inc., 1975.
[23]关春曼, 张桂荣, 程大鹏, 等. 中小河流生态护岸技术发展趋势与热点问题[J]. 水利水运工程学报, 2014(4): 75-81.
[24]任 强.新型生态护岸在江苏省内河航道中的应用[J].中国水运(下半月),2013,13(12):228-229.
[25]张继义, 赵哈林, 张铜会, 等. 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J]. 植物生态学报, 2004, 28(1): 86-92.
[26]王 越, 丁艳荣, 范北林. 三峡工程蓄水后荆江河段河势变化及生态护岸研究[J]. 长江流域资源与环境, 2011, 20(增刊1): 117-122.
[27]徐朝辉, 步海滨, 程巍华, 等. 内河航道生态护岸的发展及应用分析[J]. 水运工程, 2009(9): 107-110.
基金
交通运输行业重点科技项目(2018-ZD3-024);中央级公益性科研院所基本科研业务费专项(WTI-61806);国家重点研发计划项目(2016YFC0503601)