为研究橡胶混凝土的弯曲疲劳性能,将粒径为0.54 mm的橡胶颗粒以不同掺量掺入混凝土中,制成橡胶混凝土试件进行轴压试验与轴拉试验,测其应力-应变曲线,计算出弹性模量和泊松比。进行四点弯曲静载试验及ABAQUS数值模拟,得到极限荷载、峰值挠度和荷载-挠度曲线,试验结果与数值模拟结果较接近,验证了数值模型的可靠性。使用疲劳软件Fe-safe分析等幅及变幅加载下橡胶混凝土弯曲疲劳寿命,结果表明:无论是普通混凝土还是橡胶混凝土,在等幅循环荷载下,应力水平越高,弯曲疲劳寿命越低;各掺量下橡胶混凝土的弯曲疲劳寿命都比普通混凝土的大,且橡胶掺量越多弯曲疲劳寿命越大;在变幅荷载作用下,随着橡胶掺量的增大,混凝土的弯曲疲劳寿命也越大;随着变幅等级增多,各掺量下橡胶混凝土的弯曲疲劳寿命均降低,且变幅等级越多,弯曲疲劳寿命越低。
Abstract
In the aim of investigating the flexural fatigue performance of rubber concrete, we prepared rubber concrete specimens by mixing different dosages of rubber particles (particle size 0.54 mm) into concrete, and carried out axial compression test and axial tension test. According to the measured stress-strain curve we calculated the elastic modulus and Poisson's ratio. Furthermore, we acquired the ultimate load, peak deflection and load-deflection curves via four-point bending static load test and ABAQUS numerical simulation. The test results were close to the numerical simulation results, verifying the reliability of the numerical model. Moreover, we analyzed the flexural fatigue life expectancy of rubber concrete under constant-amplitude loading and variable-amplitude loading by using software Fe-safe. Our findings demonstrated that both ordinary concrete and rubber concrete had a shorter flexural fatigue life expectancy at higher stress level under constant-amplitude cyclic loading. The flexural fatigue life of rubber concrete with any rubber dosage was longer than that of ordinary concrete, and the more rubber content, the longer the flexural fatigue life. Under variable amplitude load, the flexural fatigue life of concrete extended with the rising of rubber content; with the increase of the amplitude grade, the flexural fatigue life of rubber concrete shortened with the increase of amplitude grade.
关键词
橡胶混凝土 /
ABAQUS模拟 /
弯曲性能 /
Fe-safe计算 /
疲劳寿命
Key words
rubber concrete /
ABAQUS simulation /
bending property /
Fe-safe calculation /
fatigue life expectancy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 岳雪涛, 刘冲昊, 王可良, 等. 橡胶混凝土的研究进展[J]. 山西建筑, 2018, 44(32): 115-116.
[2] RICHARDSON A, COVENTRY K, EDMONDSON V,et al. Crumb Rubber Used in Concrete to Provide Freeze-Thaw Protection (Optimal Particle Size)[J]. Journal of Cleaner Production, 2016, 112: 599-606.
[3] RICHARDSON A E, COVENTRY K A, WARD G. Freeze/Thaw Protectionof Concrete with Optimum Rubber Crumb Content[J]. Journal of Cleaner Production, 2012, 23(1): 96-103.
[4] ZHOU Zuo-wan, LIU Shi-kai, GU Li-xia. Studies on the Strength and Wear Resistance of Tetrapod-shaped ZnO Whisker-reinforced Rubber Composites[J]. Journal of Applied Polymer Science, 2010, 80(9): 1520-1525.
[5] ZHENG Xiu-hua, ZHANG Xu, ZHAN Shi-zuo. Study on Mechanical Properties and Impermeability of Rubber Concrete[J]. Key Engineering Materials, 2014, 629/630: 467-472.
[6] XU Jin-hua, CHEN Si-li, JIN Sheng-ji, et al. Experimental Research on Impermeability of Crumb Rubber Concrete[J]. Advanced Materials Research, 2014, 838/841: 2354-2357.
[7] POLIKUTIN A E, OFORKAJA T O, NGUYEN P D. Experimental Research on the Strength and Crack Resistance of Flexural Members Normal Sections of Reinforced Rubber Concrete of a T-section[J]. Materials Science Forum, 2018, 931(PT.1): 25-263.
[8] ZHU Qi-lin, DAI Hui-li, CHEN De-peng, et al. Study on Influence of Waste Tire Rubber Particles on Concrete Crack Resistance at Early Age[C]//Proceedings of the IOP Conference Series Earth and Environmental Science 242(5):052060. DOI:10.1088/1755-1315/242/5/052060.
[9] 张 涛,刘松玉,蔡国军. 橡胶-砂颗粒混合物压缩特性与胶结退化试验研究[J].中国公路学报, 2018, 31(11): 21-30.
[10]ZHANG Tao, CAI Guo-jun, DUAN Wei-hong. Experimental on Compression Characteristics and Bonding Degradation of Rubber-sand Mixtures[J].Construction and Building Materials, 2016, 120: 514-523.
[11]朱翠冉. 玄武岩纤维钢筋混凝土梁疲劳试验性能研究[D].呼和浩特: 内蒙古工业大学, 2013.
[12]程 俊. 含粗骨料超高性能混凝土弯曲疲劳性能研究[D].南京: 东南大学, 2018.
[13]金 文. 超高性能混凝土弯曲疲劳性能及破坏中裂缝发展研究[D].广州:华南理工大学, 2018.
[14]徐 薄. 玄武岩纤维混凝土弯曲疲劳性能试验研究[D].昆明: 昆明理工大学, 2018.
[15]蔡鹏宏, 李宗华. 聚丙烯纤维混凝土疲劳特性研究[J]. 公路交通科技(应用技术版), 2012, 8(11): 9-11.
[16]吕 雁. 玻璃纤维混凝土弯曲疲劳性能及累积损伤研究[D].昆明: 昆明理工大学, 2013.
[17]HUANG Bo-tao, LI Qing-hua, XU Shi-lang. Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function[J].Journal of Structural Engineering, 2019, 145(1): 04018234.
[18]李 悦. 废橡胶粉改性混凝土的研究[C]//第九届全国水泥和混凝土化学及应用技术会议论文汇编(上卷).广州:中国硅酸盐学会,2005: 444-449.
[19]王立燕, 王 超, 张亚梅, 等. 运用声发射技术研究橡胶混凝土疲劳损伤过程[J]. 东南大学学报(自然科学版), 2009, 39(3): 574-579.
[20]郑万虎. 橡胶混凝土疲劳性能的试验研究[D].广州: 广东工业大学, 2011.
[21]冯文贤, 刘 锋, 郑万虎, 等. 橡胶混凝土疲劳性能的试验研究[J]. 建筑材料学报, 2012, 15(4): 469-473.
[22]HERNÁNDEZ-OLIVARES F, BARLUENGA G, PARGA-LANDA B,et al. Fatigue Behaviour of Recycled Tyre Rubber-filled Concrete and Its Implications in the Design of Rigid Pavements[J]. Construction & Building Materials, 2007, 21(10): 1918-1927.
[23]LIU Feng, ZHENG Wan-hu, LI Li-juan, et al. Mechanical and Fatigue Performance of Rubber Concrete[J]. Construction & Building Materials, 2013, 47(5): 711-719.
[24]CHEN Bo, GUO Li-ping, SUN Wei. Fatigue Performance and Multiscale Mechanisms of Concrete Toughened by Polymers and Waste Rubber[J]. Advances in Materials Science & Engineering, 2014(4): 1-7.
[25]ABDULAZIZ A, REYES G, FABIO P F, et al. Fatigue Performance of Flexible Steel Fibre Reinforced Rubberised Concrete Pavements [J]. Engineering Structures, 2019, 193: 170-183.
[26]丁晓唐, 王 磊, 刘海霞, 等. 确定混凝土受拉应力-应变全曲线的一种新型试验方法[J]. 水电能源科学, 2013(12): 126-129.
[27]王景贤, 李兴超, 崔 强, 等. 混凝土轴心抗拉试验新型模具研究[J]. 商品混凝土, 2018(增刊1): 82-85.