干湿循环下复合改良黄土剪切力学特性试验研究

冀慧, 张涛, 刘保健

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (8) : 120-126.

PDF(5097 KB)
PDF(5097 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (8) : 120-126. DOI: 10.11988/ckyyb.20200504
岩土工程

干湿循环下复合改良黄土剪切力学特性试验研究

  • 冀慧1,2, 张涛3, 刘保健2
作者信息 +

Experimental Study on Shear Mechanical Properties of Composite Improved Loess under Wet and Dry Cycles

  • JI Hui1,2, ZHANG Tao3, LIU Bao-jian2
Author information +
文章历史 +

摘要

纤维可有效改善土体的力学特性。通过不固结不排水三轴剪切试验,研究了玻璃纤维掺量、纤维长度、养护龄期及干湿循环次数对纤维-秸秆灰-石灰复合改良黄土剪切力学特性的影响规律。试验结果表明:随着纤维的掺入,复合改良土的应力-应变曲线逐步转为应变硬化型,极限偏应力、黏聚力及内摩擦角随着纤维掺量及纤维长度的增加,呈现先增加后减小的趋势,当纤维掺量为0.4%、纤维长度为9 mm时为最优配比。干湿循环条件下,复合改良土的极限偏应力、黏聚力及内摩擦角逐步减小,前期衰减速率较大,后期基本趋于稳定,衰减幅值受纤维掺量、纤维长度影响明显。养护龄期越长,改良土在不同干湿循环下的强度越高,稳定性越好。

Abstract

Fibers effectively improve the mechanical properties of soil. In this paper, the influences of glass fiber content, fiber length, curing age, and drying-wetting cycles on the shear mechanical properties of fiber-straw ash-lime improved composite loess were examined through unconsolidated and undrained triaxial shear tests. Results demonstrated that with the addition of fiber, the stress-strain curve of the improved soil gradually displayed strain hardening features. With the rise of fiber content and fiber length, the ultimate deviatoric stress, cohesion and internal friction angle first increased but then decreased. The optimal ratio is that the fiber content is 0.4% and the fiber length is 9 mm. Under drying-wetting cycles, the ultimate deviatoric stress, cohesion and internal friction angle of the improved soil decayed gradually; the rate of such decay was large in the early stage and tended to be stable in the later stage. The decay amplitude was obviously affected by fiber content and fiber length. Regardless of the number of drying-wetting cycles, the strength and stability of the composite improved soil enhanced with the expansion of curing age

关键词

复合改良黄土 / 剪切力学特性 / 干湿循环 / 玻璃纤维掺量 / 纤维长度 / 养护龄期

Key words

composite improved loess / shear mechanical properties / wet and dry cycles / glass fiber content / fber length / curing age

引用本文

导出引用
冀慧, 张涛, 刘保健. 干湿循环下复合改良黄土剪切力学特性试验研究[J]. 长江科学院院报. 2021, 38(8): 120-126 https://doi.org/10.11988/ckyyb.20200504
JI Hui, ZHANG Tao, LIU Bao-jian. Experimental Study on Shear Mechanical Properties of Composite Improved Loess under Wet and Dry Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(8): 120-126 https://doi.org/10.11988/ckyyb.20200504
中图分类号: TU416   

参考文献

[1] 房 军,梁庆国,贺 谱,等.兰州水泥改良黄土拉压强度对比试验研究[J].铁道建筑,2018,58(10):81-85.
[2] 高中南,钟秀梅,王 峻,等.粉煤灰改良饱和黄土动力特性研究[J].世界地震工程,2019,35(3):91-98.
[3] 张豫川,姚永国,周 泓.长龄期改良黄土抗剪强度与渗透性试验研究[J].岩土力学,2017,38(增刊2):170-176.
[4] 吴文飞,张纪阳,何 锐,等.固化剂改良水泥稳定黄土强度及水稳性研究[J].硅酸盐通报,2016,35(7): 2159-2165.
[5] 夏 琼,杨有海,耿 煊.粉煤灰与石灰、水泥改良黄土填料的试验研究[J].兰州交通大学学报,2008(3):40-43,47.
[6] 张德恒,孙树林.石灰-生物质灰渣改良膨胀土强度变形及微观结构特征[J].辽宁工程技术大学学报(自然科学版),2018,37(4):726-731.
[7] FESTUGATO L,MENGER,ESTFANO,BENEZRA F,et al. Fibre-reinforced Cemented Soils Compressive and Tensile Strength Assessment as a Function of Filament Length[J].Geotextiles & Geomembranes,2017,45(1):77-82.
[8] YANG B H,WENG X Z, LIU J Z, et al. Strength Characteristics of Modified Polypropylene Fiber and Cement-reinforced Loess[J]. Journal of Central South University,2017,24(3):560-568.
[9] MOHAMMAD J,MOHAMMAD A.Durabilityand Mechanistic Characteristics of Fiber Reinforced Soil-cement Mixtures[J].The International Journal of Pavement Engineering,2006,7(1):53-62.
[10]胡文乐,何朋立,刘 华.玄武岩纤维黄土抗剪强度变化规律与最优配合比分析[J].中国地质灾害与防治学报, 2019, 30(4):92-97.
[11]孙 舒,袁学锋,李福林,等.聚丙烯纤维土受力性能试验研究[J].长江科学院院报, 2016,33(2):71-73,79.
[12]杜伟飞,刘争宏,沈云霞,等.聚丙烯纤维优化黄土改良土力学性能研究[J].工程勘察, 2014, 42(11):12-16,28.
[13]蔡 奕,施 斌,高 玮,等. 纤维石灰土工程性质的试验研究[J].岩土工程学报,2006, 28(10): 1283-1287.
[14]刘 雨, 朱自强, 陈俊桦.干湿循环条件下水泥改良泥质板岩粗粒土的静力特性试验研究[J].中南大学学报(自然科学版), 2019, 50(3):679-686.
[15]杨和平,张 锐,郑健龙.有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J].岩土工程学报,2006, 28(11): 1936-1941.

基金

山西省应用基础研究计划项目(201901D211177);陕西省自然科学基础研究计划项目(2019JQ-689)

PDF(5097 KB)

Accesses

Citation

Detail

段落导航
相关文章

/