大型水库建成后由于库区水动力学特性、光混特性、热量特性等发生了改变,水库垂向水温将呈现出明显的分层现象,对库区及其下游河道的生态环境造成显著影响,常通过采用分层取水措施加以改善。针对控制幕分层取水方法,通过温分层水槽试验,研究了分层水体中设置水温控制幕后,控制幕前水温、流速分布特征以及下泄水温的变化情况。试验考虑了不同热冷水流量比、控制幕距取水口距离、取水口位置和控制幕遮挡率等因素的影响。试验结果表明:控制幕设置后,控制幕上游近幕布区域温跃层厚度减小,温跃层强度增大,水体掺混受到抑制;控制幕下游温跃层厚度增大明显,控制幕促进了控制幕下游水体的垂向扩散,破坏了原水体分层现象;控制幕上游近幕布区域,热冷水流量比越小取水口位置越低,控制幕遮挡率越小温跃层厚度越厚,温跃层强度越小。热冷水流量比增大,取水口位置提高以及控制幕遮挡率增加均会使下泄水温升高。
Abstract
Selective withdrawal is widely implemented to moderate the effect of thermal stratification in large reservoirs and to solve the problem caused by the changes of hydrodynamic and thermal characteristics after the construction of dam. An experimental study was conducted to investigate the temperature and flow fields in front of the temperature-control curtain (TCC) set in thermal structure for selective withdrawal. Impacts of hot-cold water flow ratio, distance from the curtain to water intake, water intake position and water retaining proportion were systematically investigated in the experiments. Outflow temperature was also measured. The results indicated that thermocline thickness upstream side of TCC decreased while thermocline intensified, thus inhibiting water mixing. The thermocline thickness increased obviously, and the vertical diffusion of water was promoted downstream of TCC. When hot-cold water flow ratio, height of water intake and water retaining proportion reduced, the thickness of thermocline increased while the intensity of thermocline attenuated. In addition, the outflow temperature climbed with the augments of hot-cold water flow ratio, position of water intake and water retaining proportion.
关键词
水温分层 /
水温控制幕 /
分层取水 /
温跃层 /
下泄水温
Key words
water temperature stratification /
temperature control curtain /
selective withdrawal /
thermocline /
outflow temperature
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郑守仁.我国高坝大库建设及运行安全问题探讨[C]//贾金生,陈云华.水库大坝建设与管理中的技术进展:中国大坝协会2012学术年会论文集.郑州:黄河水利出版社,2012:25-33.
[2] 张士杰, 刘昌明, 谭红武, 等. 水库低温水的生态影响及工程对策研究[J]. 中国生态农业学报, 2011,19(6):1412-1416.
[3] BARTHOLOW J, HANNA R B, SAITO L,et al. Simulated Limnological Effects of the Shasta Lake Temperature Control Device[J]. Environmental Management, 2001,27(4):609-626.
[4] 鲍其钢, 乔光建. 水库水温分层对农业灌溉影响机理分析[J]. 南水北调与水利科技, 2011,9(2):69-72.
[5] 吴莉莉, 王惠民, 吴时强. 水库的水温分层及其改善措施[J]. 水电站设计, 2007(3):97-100.
[6] 雷 欢, 陈 锋, 黄道明. 水温对鱼类的生态效应及水库温变对鱼类的影响[J]. 环境影响评价, 2017,39(4):36-39.
[7] 张 信, 乾爱国, 王鹏远, 等. 戛洒江一级水电站下泄水温对鱼类的影响[J]. 环境影响评价, 2016,38(3):22-23.
[8] WU S, CAO W, WANG H, et al. Research on the Multi-level Intake Water Temperature Effect of the Yalong River Jinping-I Hydropower Project[J]. Science China Technological Sciences, 2011,54(Sup.1):125-132.
[9] DENG Y, TUO Y, LI J,et al. Spatial-temporal Effects of Temperature Control Device of Stoplog Intake for Jinping I Hydropower Station[J]. Science China Technological Sciences, 2011,54(Sup.1):83-88.
[10] DING Y, LI T, ZHAO L, et al. Numerical Simulation of Water Hammer in Multi-level Intake Hydropower Station Considering the Impact of Intake[J]. Engineering Computations, 2019,36(3):850-875.
[11] GAO X, SONG Q, SUN B, et al. PIV Experimental Study on the Flow Characteristics Upstream of a Floating Intake in Nonlinear Stratified Ambient Conditions[J]. Environmental Fluid Mechanics, 2019,19(4):1005-1024.
[12] VERMEYEN T.Application of Flexible Curtains to Control Mixing and Enable Selective Withdrawal in Reservoirs[C]//Proceedings of the 5th International Symposium on Stratified Flows, IAHR. Vancouver, Canada, July 10-13, 2000.
[13] 段文刚, 王才欢, 杜 兰, 等. 大型分层取水电站进口水力学研究进展[J]. 长江科学院院报, 2013,30(8):5-9.
[14] SHERMAN B. Scoping Options for Mitigating Cold Water Discharges from Dams[R].Canberra:CSIRO Land and Water,2000.
[15] ASAEDA T, PRIYANTHA D G N, SAITOH S, et al. A New Technique for Controlling Algal Blooms in the Withdrawal Zone of Reservoirs Using Vertical Curtains[J]. Ecological Engineering, 1996,7(2):95-104.
[16] POLITANO M, HAQUE MM, WEBER L J. A Numerical Study of the Temperature Dynamics at McNary Dam[J]. Ecological Modelling, 2008,212(3):408-421.
[17] SHAMMAA Y, ZHU D Z. Experimental Study on Selective Withdrawal in a Two-Layer Reservoir Using a Temperature-Control Curtain[J]. Journal of Hydraulic Engineering, 2010,136(4):234-246.
[18] VERMEYEN T. Use of Temperature Control Curtains to Control Reservoir Release Water Temperatures[M]. Washington DC: U.S. Dept. of the Interior, Bureau of Reclamation, 1997.
[19] 高学平, 赵耀南, 陈 弘. 水库分层取水水温模型试验的相似理论[J]. 水利学报, 2009,40(11):1374-1380.
[20] 高学平, 宋清林, 孙博闻. 控制幕运行方式改善下泄水温及其成因研究[J]. 中国水利水电科学研究院学报, 2018,16(1):45-52.
[21] 练继建, 杜慧超, 马 超. 隔水幕布改善深水水库下泄低温水效果研究[J]. 水利学报, 2016,47(7):942-948.
[22] 薛文豪, 邓 云, 李 嘉, 等. 大型水库帷幕水温分层取水效果研究[J]. 工程科学与技术, 2017,49(增刊1):27-34.
[23] HE W, LIAN J, YAO Y, et al. Modeling the Effect of Temperature-control Curtain on the Thermal Structure in a Deep Stratified Reservoir[J]. Journal of Environmental Management, 2017, 202(Part 1):106-116.
[24] 吴登将. 温度分层型水库控制幕取水下泄水温研究[D].天津:天津大学, 2016.
[25] 褚克坚. 温差剪切分层流运动特性试验及数值模拟研究[D].南京:河海大学, 2006.
[26] 褚克坚, 华祖林, 王惠民, 等. 明渠剪切分层流垂向扩散特性试验研究[J].水科学进展,2005,16(1):13-17.
[27] 王 煜, 戴会超.大型水库水温分层影响及防治措施[J]. 三峡大学学报(自然科学版), 2009,31(6):11-14.
[28] 王银珠, 濮培民. 抚仙湖水温跃层的初步研究[J]. 海洋湖沼通报, 1982(4):1-9.