洪泽湖近50 a特征水位变化规律及影响因素

梅海鹏, 王振龙, 刘猛, 周佳敏

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 35-40.

PDF(1598 KB)
PDF(1598 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 35-40. DOI: 10.11988/ckyyb.20191272
水资源与环境

洪泽湖近50 a特征水位变化规律及影响因素

  • 梅海鹏1,2, 王振龙1,2, 刘猛1,2, 周佳敏3
作者信息 +

Characteristic Water Levels of Hongze Lake in the Past Five Decades: Variation Rules and Influencing Factors

  • MEI Hai-peng1,2, WANG Zhen-long1,2, LIU Meng1,2, ZHOU Jia-min3
Author information +
文章历史 +

摘要

根据1967—2016年蒋坝、尚咀、高良涧和老子山4个水位站逐日数据,运用Mann-Kendall检验、有序聚类分析、BFAST算法和小波分析,揭示了洪泽湖特征水位年际、年内变化规律;并通过分别构建各特征水位与同期各入湖、出湖流量及降水量、蒸发量之间的多元回归关系,揭示了驱动洪泽湖特征水位变化的主导因素。研究表明:3类特征水位(平均水位、最高水位、最低水位)显著突变时期均在1982—1985年之间,1986年后洪泽湖特征水位呈显著上升趋势,最低水位变化响应时间最早,最高水位响应时间最晚;各特征水位均存在36、17、9 a的第1、第2、第3主周期;在蓄水期(Stage1)小柳巷入湖流量是影响平均水位和最低水位变化的主要因素,分别达到36%和33%,三河闸出湖流量是影响最高水位变化的主要因素,达36%;泄水期(Stage2)双沟入湖流量对最低水位影响更加明显,达到47%;涨水期(Stage3)小柳巷入湖流量在平均水位变化中起主要作用,达到29%。研究结果对于进一步认识洪泽湖水位变化规律具有重要意义,可为洪泽湖水位及上下游径流调控提供科学依据。

Abstract

According to the daily water level data at Jiangba, Shangju, Gaoliangjian, and Laozishan stations from 1967-2016, we investigated into the interannual and annual variation rules of characteristic (average, maximum, and minimum) water levels in Hongze Lake via Mann-Kendall test, order cluster analysis, BFAST (Breaks for Additive Seasonal and Trend) algorithm, and wavelet analysis. Moreover, we revealed the dominant factor triggering the variation of characteristic water levels by constructing the multiple regression equation among each characteristic value and inflow and discharge, as well as precipitation and evaporation in the same period. 1) The characteristic water levels experienced abrupt changes in 1982-1985. After 1986, the characteristic water levels witnessed a marked increase; the lowest water level responded the earliest, while the highest water level responded the latest. 2) The fluctuation of characteristic water levels in Hongze Lake is highly consistent, with 36 years, 17 years, and 9 years as the first, second, and third principal periods, respectively. 3) In storage stage(stage 1, from October to next April), the flow rate at Xiaoliuxiang is the major factor that affect the average water level and minimum water level, accounting for 36% and 33% of the total impact factors, respectively; the flow rate at Sanhezha is the dominant factor for the highest water level, accounting for 36%. In discharging stage (stage 2, May to June), the flow rate at Shuanggou exerts a more evident impact on the lowest water level, occupying 47% of the total impact factors. In water-rising stage (stage 3, July to September), the flow rate at Xiaoliuxiang plays a prevailing role (29%) in average water level. The research results offer scientific basis for the regulation of water level and upstream and downstream runoff in Hongze Lake.

关键词

特征水位 / 影响因素 / Mann-Kendall检验 / BFAST分析 / 洪泽湖

Key words

characteristic value of water level / influencing factors / Mann-Kendall test / BFAST algorithm / Hongze Lake

引用本文

导出引用
梅海鹏, 王振龙, 刘猛, 周佳敏. 洪泽湖近50 a特征水位变化规律及影响因素[J]. 长江科学院院报. 2021, 38(1): 35-40 https://doi.org/10.11988/ckyyb.20191272
MEI Hai-peng, WANG Zhen-long, LIU Meng, ZHOU Jia-min. Characteristic Water Levels of Hongze Lake in the Past Five Decades: Variation Rules and Influencing Factors[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 35-40 https://doi.org/10.11988/ckyyb.20191272
中图分类号: P332.3   

参考文献

[1] 方佩珍,晁建颖.洪泽湖生态系统演变趋势分析及生态安全问题诊断[J].人民珠江,2018,39(3):16-21.
[2] 何孝光,贾 健,刘锦霞.南水北调东线洪泽湖抬高蓄水位工程效益分析[J].建筑经济,2007(4):92-93.
[3] 万洪秀,薛 滨,郭 娅,等.中国五大淡水湖研究态势:基于WOS的文献计量分析[J].水资源与水工程学报,2018,29(6):8-18.
[4] 楚恩国.洪泽湖流域水文特征分析[J].水科学与工程技术,2008(3):22-25.
[5] 邓 恒,徐国宾,段 宇,等.淮河与洪泽湖河湖关系研究进展及展望[J].水资源与水工程学报,2018,29(5):142-147.
[6] 叶正伟,朱国传,江 波.过去100年来洪泽湖洪涝灾害特性分析[J].水利水电技术,2005,36(3):62-65.
[7] 樊贤璐,徐国宾,邓 恒, 等.1975—2015年洪泽湖水沙变化趋势及成因分析[J].南水北调与水利科技,2019,17(3):7-15.
[8] 虞邦义,郁玉锁.洪泽湖泥沙淤积分析[J].泥沙研究,2010,35(6):36-41.
[9] CAO Zhi-gang, DUAN Hong-tao, FENG Lian, et al. Climate- and Human-induced Changes in Suspended Particulate Matter over Lake Hongze on Short and Long Timescales[J]. Remote Sensing of Environment, 2017, 192: 98-113.
[10]MANN H B. Nonparametric Test against Trend[J]. Econometrica, 1945, 13(3): 245-259.
[11]KENDALL M G. Rank Correlation Methods[J]. British Journal of Psychology, 1955, 25(1): 86-91.
[12]田小靖,赵广举,穆兴民,等.水文序列突变点识别方法比较研究[J].泥沙研究,2019,44(2):33-40.
[13]VERBESSELT J, HYNDMAN R, ZEILEIS A, et al. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series[J]. Remote Sensing of Environment, 2010, 114(12): 2970-2980.
[14]王 烨,李 宁,张正涛,等.BFAST:一种分析气候极端事件变化的新方法[J].灾害学,2016,31(4):196-199.
[15]桑燕芳,王中根,刘昌明.小波分析方法在水文学研究中的应用现状及展望[J].地理科学进展,2013,32(9):1413-1422.
[16]吴晓兵.洪泽湖60年的变迁[J].中国水利,2009(14):21-23.
[17]徐仲才,徐善安.洪泽湖控制工程与和谐水文化:兼及对“天人合一”和人水和谐的思考[J].水利发展研究,2008,8(1):68-74.

基金

国家重点研发计划课题(2017YFC0404504)

PDF(1598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/