基于耗散能的海洋K0固结土统一修正剑桥模型

吴有平, 伏亮明, 周轩漾, 胡达, 黄礼胜

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 129-136.

PDF(1250 KB)
PDF(1250 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (1) : 129-136. DOI: 10.11988/ckyyb.20191134
岩土工程

基于耗散能的海洋K0固结土统一修正剑桥模型

  • 吴有平1,2, 伏亮明1, 周轩漾1, 胡达3, 黄礼胜4
作者信息 +

Unified Modified Cam-Clay Model for Marine K0 Consolidated Soil Based on Dissipative Energy

  • WU You-ping1,2, FU Liang-ming1, ZHOU Xuan-yang1, HU Da3, HUANG Li-sheng4
Author information +
文章历史 +

摘要

在海上风电桩基工程计算时,为方便土体本构关系的使用,减少土工参数的选取,对修正剑桥模型进行了改进。首先根据海洋工程中桩周土体通常为K0固结饱和土的特点,在修正剑桥模型的基础上,引入相变参数,推导出适用于剪胀性土体的屈服面函数;然后参考统一硬化模型的研究理念,引入耗散功作为硬化参量,结合传统弹塑性理论,对Collins的热力学土体模型进行改进,提出了一种同时适用于砂土与黏土的新的统一修正剑桥模型;最后采用2个案例进行验证。研究结果表明:提出的本构模型具有计算精度高、选用计算参数少且物理意义明确的特点,可为海洋工程基础的相关计算提供参考。

Abstract

The modified Cam-Clay model is improved to facilitate the use of soil constitutive model and reduce the selection of geotechnical parameters in the calculation of offshore wind power pile foundation. Firstly, according to the characteristics of K0 consolidated saturated soil in ocean engineering, the yield surface function suitable for dilatant soil is derived by introducing phase change parameters based on the modified Cam-Clay model. Furthermore, referring to the research concept of the unified hardening model, the dissipative work is introduced as hardening parameter to improve the thermodynamic soil model of Collins in association with the traditional elastic-plastic theory. A new unified modified Cam-Clay model suitable for both sand and clay is proposed. Finally, case analysis is carried out to verify the model. Results demonstrate that the constitutive model proposed in this paper needs few calculation parameters, and is of high accuracy and clear physical meaning.

关键词

海洋土体 / K0固结 / 耗散功 / 硬化参量 / 统一修正剑桥模型

Key words

marine soil / K0 consolidation / dissipated work / hardening parameters / unified modified Cam-Clay model

引用本文

导出引用
吴有平, 伏亮明, 周轩漾, 胡达, 黄礼胜. 基于耗散能的海洋K0固结土统一修正剑桥模型[J]. 长江科学院院报. 2021, 38(1): 129-136 https://doi.org/10.11988/ckyyb.20191134
WU You-ping, FU Liang-ming, ZHOU Xuan-yang, HU Da, HUANG Li-sheng. Unified Modified Cam-Clay Model for Marine K0 Consolidated Soil Based on Dissipative Energy[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 129-136 https://doi.org/10.11988/ckyyb.20191134
中图分类号: TV16   

参考文献

[1] API.Recommended Practice for Planning,Designing,and Constructing Fixed Offshore Platforms-Working Stress Design[S]. Washington,D C:American Petroleum Institute,2007.
[2] DNV-OS-J101, Design of Offshore Wind Turbine Structures[S]. Norway: Det Norske Veritas AS, 2013.
[3] BOUZID D A, BHATTACHARYA S, DASH S R. Winkler Springs (p-y Curves) for Pile Design from Stress-Strain of Soils: FE Assessment of Scaling Coefficients Using the Mobilized Strength Design Concept[J]. Geomechanics and Engineering, 2013, 5(5): 379-399.
[4] ZHANG Y, ANDERSEN K H. Scaling of Lateral Pile p-y Response in Clay from Laboratory Stress-Strain Curves[J]. Marine Structures, 2017, 53: 124-35.
[5] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of Clays in States Wetter than Critical[J]. Geotechnique, 1963, 13(3): 211-240.
[6] HOULSBY G T. A Study of Plasticity Theories and Their Applicability to Soils[D]. Cambridge: University of Cambridge, 1981.
[7] COLLINS I F, HOULSBY G T. Application of Thermomechanical Principles to the Modelling of Geotechnical Materials[J]. Proceedings Mathematical Physical & Engineering Sciences, 1997, 453: 1975-2001.
[8] COLLINS I F,HILDER T.A Theoretical Framework for Constructing Elastic/plastic Constitutive Models of Triaxial Tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1313-1347.
[9] 王秋生, 王玉杰, 张 波, 等. 一个基于热力学的土体本构模型[J]. 岩土力学, 2010, 31(2): 350-354,360.
[10]LADE P V.Elasto-plastic Stress-Strain Theory for Cohesionless Soil with Curved Yield Surfaces[J].International Journal of Solids and Structures,1977,13(11):1019-1035.
[11]LADE P V, DUNCAN J M. Elastoplastic Stress-Strain Theory for Cohesionless Soil [J]. Journal of Geotechnical Engineering, 1975, 101: 1037-1053.
[12]LADE P V, MUSANTE H M. Three-dimensional Behavior of Remolded Clay[J]. Journal of the Geotechnical Engineering Division, 1978, 104(2): 193-209.
[13]LADE P V,KIM M K. Single Hardening Constitutive Model for Soil,Rock and Concrete[J]. International Journal of Solids and Structures,1995,32(14):1963-1978.
[14]CROUCH R S, WOLF J P. Unified 3D Critical State Bounding-surface Plasticity Model for Soils Incorporating Continuous Plastic Loading under Cyclic Paths. Part I: Constitutive Relations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 735-758.
[15]YAO Y P, MATSUOKA H, SUN D A. A Unified Elastoplastic Model for Clay and Sand with the SMP criterion[C]//Proceedings of the 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge. Barton, ACT: Australian Geomechanics Society, 1999: 997-1003.
[16]YAO Y P, SUN D A. Application of Lade’s Criterion to Cam-clay Model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119.
[17]YAO Y P, SUN D A, MATSUOKA H. A Unified Constitutive Model for Both Clay and Sand with Hardening Parameter Independent on Stress Path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
[18]YAO Y P, HOU W, ZHOU A N. UH Model: Three-dimensional Unified Hardening Model for Overconsolidated Clays[J]. Geotechnique, 2009, 59(5): 451-469.
[19]孔 亮, 李学丰, 赵占兵. 土体热力学本构模型的改进, 验证及有限元分析[J]. 岩土工程学报, 2009,31(10):1595-1601.
[20]李学丰, 孔 亮, 花丽坤. 土体热力学模型的改进及三轴试验有限元分析[J]. 同济大学学报(自然科学版), 2011, 39(1): 7-12.
[21]YU H S. CASM: A Unified State Parameter Model for Clay and Sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653.
[22]YAO Y P, LIU L, LUO T, et al. Unified Hardening (UH) Model for Clays and Sands[J]. Computers and Geotechnics, 2019, 110: 326-343.
[23]石学法. 中国近海海洋:海洋底质[M]. 北京:海洋出版社, 2014.
[24]WIEMANN J, LESNY K. Design Aspects of Monopiles in German Offshore Wind Farms[M]//Frontiers in Offshore Geotechnics. London: Taylor & Francis Group, 2005: 383-389.
[25]NAKAI T. An Isotropic Hardening Elastoplastic Model for Sand Considering the Stress Path Dependency in Three-dimensional Stresses[J]. Soils and Foundations, 1989, 29(1): 119-137.
[26]孙德安, 姚仰平, 殷宗泽. 初始应力各向异性土的弹塑性模型[J]. 岩土力学, 2000, 21(3): 222-226.
[27]黄文熙. 土的弹塑性应力-应变模型理论[J]. 岩土力学, 1979, 1(1): 1-20.
[28]SMITH P R, JARDINE R J, HIGHT D W. The Yielding of Bothkennar Clay[J]. Géotechnique, 1992, 42(2): 257-274.
[29]王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4):496-504.

基金

湖南省自然科学基金项目(2019JJ50030);湖南省教育厅科学研究项目(18C0850)

PDF(1250 KB)

Accesses

Citation

Detail

段落导航
相关文章

/