长江科学院院报 ›› 2020, Vol. 37 ›› Issue (11): 107-113.DOI: 10.11988/ckyyb.20190918

• 岩土工程 • 上一篇    下一篇

刚性挡墙非极限被动土压力计算方法

陈建旭1,2, 郭宁1, 虞佳颖2,3, 余明东1   

  1. 1.西昌学院 土木与水利工程学院,四川 西昌 615013;
    2.西华大学 能源与动力工程学院, 成都 610039;
    3.浙江同济科技职业学院,杭州 311231
  • 收稿日期:2019-07-29 修回日期:2019-10-08 出版日期:2020-11-01 发布日期:2020-12-02
  • 通讯作者: 郭 宁(1966-),男,重庆南川人,教授,研究方向为工程地质、水文地质。E-mail:18981561978@189.cn
  • 作者简介:陈建旭(1993-),男,四川达州人,讲师,硕士,研究方向为挡土墙土压力的计算。E-mail:823934635@qq.com
  • 基金资助:
    四川省科技厅重点项目(2018GZ0499); 四川省教育厅重大培育项目(14CZ0013)

Method of Calculating Non-limit Passive Earth Pressure of Rigid Retaining Wall

CHEN Jian-xu1,2, GUO Ning1, YU Jia-ying2, 3, YU Ming-dong1   

  1. 1. School of Civil and Hydraulic Engineering, Xichang University, Xichang 615013, China;
    2. School of Energy and Power Engineering, Xihua University, Chengdu 610039, China;
    3. Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
  • Received:2019-07-29 Revised:2019-10-08 Online:2020-11-01 Published:2020-12-02

摘要: 现有非极限被动土压力理论大多是基于墙背铅直的情况而得到的,公式的适用范围有限,并且在推导过程中也忽略了土层间剪应力的作用。针对平动模式下墙背倾斜的刚性挡土墙,在已有理论基础上,进一步考虑土层间剪应力的作用,基于水平层分析法,推导了非极限被动土压力的理论公式,扩大了公式的适用范围。研究结果表明:与不考虑剪应力的理论成果相比,本文解与试验值更加吻合,从而验证了公式的可靠性;是否考虑土层间剪应力并不影响土压力合力,但影响土压力的分布,且在墙体上部土压力大于未考虑剪应力的分布解,下部则相反;非极限被动土压力和土层间平均剪应力均随着墙体位移比、填土内摩擦角、填土外摩擦角的增大而增大;随着墙背倾角的增大,土压力强度在墙体上半部分几乎无变化,下半部分减小较为明显;土层间平均剪应力在墙体上部分减小,墙底处增大。同时考虑土拱效应与剪应力的合力作用点位置高于仅考虑土拱效应的解,而低于库伦解。研究结果可为挡土墙设计提供参考。

关键词: 挡土墙, 非极限被动土压力, 土层间剪应力, 水平层分析法, 土拱效应, 库伦解

Abstract: Current theories of calculating non-limit passive earth pressure is mostly based on the assumption that the back of the wall is vertical, which limits the applicable range of formulae and also neglects the effect of shear stress between soil layers during derivation. In this paper, a formula for the non-limit passive earth pressure of retaining walls with inclined rigid wall under translation mode is presented in consideration of the shear stress between soil layers based on horizontal layer analysis. Compared with the theoretical results not considering shear stress, the solution of the presented formula agrees well with experimental values, thus verifying the rationality of the formula. Whether or not to consider the shear stress between soil layers does not affect the resultant force of earth pressure, but affects the distribution of earth pressure. The earth pressure in the upper part of the wall is larger than the solution without considering the shear stress, while in the lower part smaller. Both the non-limit state passive earth pressure and the average shear stress between soil layers increase with the increase of the wall displacement ratio, the internal friction angle of backfill, and the friction angle of wall and soil. As the inclination of the wall increases, the earth pressure intensity hardly changes in the upper part of the wall, but changes apparently in the lower part. The average shear stress between soil layers decreases partially on the wall and increases at the bottom of the wall. The position of the resultant force point considering simultaneously the soil arching and shear stress is higher than the solution considering only the soil arching effect, but lower than the Coulomb solution.

Key words: retaining wall, non-limit state passive earth pressure, shear stress among soil layers, horizontal layer analysis, soil arch, Coulomb solution

中图分类号: