基于长江流域及周边范围在内的318个气象站点1956—2018年的实测资料和CMIP5全球气候模式在3种RCPs情景下的预估数据,以标准化降水蒸散发指数作为干旱等级的划分指标,对流域历史气象干旱时空演变特征进行了分析,并预估了流域未来不同排放情景下的气象干旱时空变化趋势。结果表明:①近60 a,流域干旱率年际变化较大,平均干旱率为18.21%。从年代变化来看,近20 a干旱影响范围普遍较大;干旱频发地区主要位于岷江流域,干旱次数呈从上游向下游递减的趋势;高强度的干旱多发生于金沙江中下游地区和成都平原地区,平均场次干旱强度也呈从上游向下游递减的趋势;②在RCP2.6、RCP4.5和RCP8.5情景下,2020—2050年长江流域多年平均干旱面积分别为74.1万km2、75.7万km2和126.4万km2;流域上、中、下游干旱频次多年平均值分别为1.1~1.2次/a、1.0~1.1次/a、1.0~1.1次/a。预估时段内上、中、下游干旱频次较历史时段分别增加38.4%~50.7%,33.7%~45.3%和32.6%~49.6%;预估时段内上、中、下游干旱强度多年平均值分别为-1.68,-1.64,-1.60,与历史时段差别不大。研究结果可为相关部门制订科学合理的干旱灾害防范措施和对策提供科学依据。
Abstract
The temporal and spatial evolution characteristics of historical meteorological drought in the Yangtze River basin (YRB) were analyzed, and the temporal and spatial variation trend of meteorological drought under different discharge scenarios in the basin in the future was predicted. The standardized precipitation evapotranspiration index is used as the index to classify drought grade according to the observed data of 318 meteorological stations in the basin and its surrounding areas from 1956 to 2018 and the predicted data of CMIP5 global climate model under three typical RCPs. Results show that: 1) In the past six decades, the drought rate in the YRB has changed greatly, with an average drought rate of 18.21%, while in ages scale, drought has had a widespread impact in the past two decades; the drought-prone areas in the YRB were mainly located in the Minjiang River basin, and the number of droughts decreased from the upper to the lower reaches; the high-intensity droughts in the YRB mostly occurred in the middle and lower reaches of the Jinsha River and in the Chengdu Plain, and the average drought intensity followed the trend of drought frequency. 2) Under RCP2.6, RCP4.5 and RCP8.5 scenarios, the annual average drought area of the YRB in 2020-2050 was 741 000 km2, 757 000 km2 and 1 264 000 km2, respectively; the annual average drought frequency of the upper, middle and lower reaches of the basin is 1.1-1.2 per year, 1.0-1.1 per year, and 1.0-1.1 per year, respectively. The frequency of drought in the upper, middle and lower reaches of the YRB increases by 38.4%-50.7%, 33.7%-45.3% and 32.6%-49.6% respectively compared with that in historical period; the average annual drought intensity of the upper, middle and lower reaches of the river basin in the predicted period is -1.68, -1.64, -1.60 respectively, which is not significantly different from that in historical period. The research results offer scientific basis for scientific and reasonable drought disaster prevention measures and countermeasures.
关键词
气候模式 /
气象干旱 /
标准化降水蒸散发指数 /
长江流域 /
时空变化
Key words
climate model /
meteorological drought /
standardized precipitation evapotranspiration index /
Yangtze River basin /
spatial and temporal variations
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis: Summary for Policymakers[M]. New York: Cambridge University Press, 2013.
[2] 杨志勇, 袁 喆, 方宏阳, 等. 基于Copula函数的滦河流域旱涝组合事件概率特征分析[J].水利学报, 2013, 44(5):556-561,569.
[3] YIN Jun, YAN Deng-hua, YANG Zhi-yong, et al. Research on Historical and Future Spatial-temporal Variability of Precipitation in China[J]. Advances in Meteorology, 2016(4):1-14.
[4] 夏 敏, 孙 鹏, 张 强, 等. 基于SPEI指数的淮河流域干旱时空演变特征及影响研究[J]. 生态学报, 2019,39(10):3643-3654.
[5] 苏布达, 姜 彤. 长江流域降水极值时间序列的分布特征[J]. 湖泊科学, 2008, 20(1):123-128.
[6] 张录军, 钱永甫. 长江流域汛期降水集中程度和洪涝关系研究[J]. 地球物理学报, 2004, 47(4):622-630.
[7] 黄朝迎. 长江流域旱涝灾害的某些统计特征[J]. 灾害学, 1992,7(3):67-72.
[8] 梁 成, 申双和. 基于WAP指数的长江流域及其以南地区干旱气候特征分析[J]. 南京信息工程大学学报(自然科学版), 2010, 2(2):166-174.
[9] 张午朝,高 冰,马育军.长江流域1961—2015年不同等级干旱时空变化分析[J].人民长江,2019,50(2):53-57.
[10]黄 涛, 徐力刚, 范宏翔, 等. 长江流域干旱时空变化特征及演变趋势[J]. 环境科学研究, 2018, 31(10):1677-1684.
[11]易 彬, 曾小凡, 赵 娜, 等. 基于标准化降水蒸散指数的长江流域旱涝情势演变[J]. 南水北调与水利科技, 2018, 16(1):89-94.
[12]陈永志, 李 傲, 周 祥. 基于多尺度SPI指数的哈巴河地区近53 a的干旱分析[J]. 长江科学院院报, 2017,34(6):12-16,23.
[13]陈 进. 长江演变与水资源利用[M]. 武汉:长江出版社,2012.
[14]郝振纯, 杨荣榕, 陈新美, 等. 1960—2011年长江流域潜在蒸发量的时空变化特征[J]. 冰川冻土, 2013, 35(2):408-419.
[15]VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23(7):1696-1718.
[16]曹 博, 张 勃, 马 彬, 等. 基于SPEI指数的长江中下游流域干旱时空特征分析[J]. 生态学报, 2018, 38(17):280-289.
[17]熊光洁, 张博凯, 李崇银, 等. 基于SPEI的中国西南地区1961—2012年干旱变化特征分析[J]. 气候变化研究进展, 2013, 9(3):192-198.
[18]YU M, LI Q, HAYES M J, et al. Are Droughts Becoming More Frequent or Severe in China Based on the Standardized Precipitation Evapotranspiration Index:1951-2010?[J]. International Journal of Climatology, 2014, 34(3): 545-558.
[19]庄少伟, 左洪超, 任鹏程, 等. 标准化降水蒸发指数在中国区域的应用[J]. 气候与环境研究, 2013, 18(5):617-625.
[20]韩会庆, 张娇艳, 陈梦玲, 等. RCPs情景下贵州省干旱趋势分析[J]. 水利水电技术, 2018, 49(10):4-10.
[21]闫 峰, 王艳姣, 吴 波. 近50年河北省干旱时空分布特征[J]. 地理研究, 2010, 29(3):423-430.
[22]马国飞, 张晓煜, 段晓风, 等. 基于标准化降水指数分析宁夏山区干旱演变特征[J]. 西北农业学报, 2010,19(10):101-106.
[23]陆桂华, 闫桂霞, 吴志勇, 等. 基于copula函数的区域干旱分析方法[J]. 水科学进展, 2010, 21(2):188-193.
[24]袁 喆. 变化环境下干旱灾害风险评价与综合应对[D]. 北京:中国水利水电科学研究院, 2016.
[25]李发鹏, 徐宗学, 刘星才, 等. 大气环流模式在松花江流域的适用性评价[J]. 水文, 2011, 31(6):24-31.
[26]赵煜飞. 中国地面降水0.5°× 0.5°格点数据集(V2.0)评估报告[R]. 北京: 国家气象信息中心, 2012.
[27]沈 艳. 中国地面气温0.5°×0.5°格点数据集(V2.0)评估报告[R]. 北京: 国家气象信息中心, 2012.
基金
国家重点研发计划项目(2016YFC0400901);江西省自然科学基金项目(20181BAA208043);国家自然科学基金项目(51709008);中央级公益性科研院所基本科研业务费项目(CKSF2017061/SZ,CKSF2019292/SH+SZ)