确定滑面应力状态以及坡体滑动方向,是运用矢量和法进行边坡稳定性分析的关键。针对任意形状的滑移面,基于最小势能原理获取滑面上的应力,通过使得系统势能最小的虚位移求解滑面上的法向力以及剪切力。同时,将边坡整体运动趋势视为微面抗滑力矢量和的相反方向,构建了一种抗滑力方向的计算方法。将滑体上的所有力在滑动方向上进行投影得到抗滑力与下滑力,二者的比值定义为边坡的安全系数。相比以往的研究,文中方法无需假定主滑面,同时避免了初始滑动方向的确定。为验证该方法的可行性,用其计算了2个经典算例的安全系数、滑动方向以及法向应力,并将其应用于某实际工程。结果表明:该方法在2个经典算例中得到的结果与其余算法结果较为接近,验证了其合理性;在实际工程中,文中方法与其他算法的计算所得安全系数较为接近。研究成果为边坡稳定计算提供了新的思路。
Abstract
Determining the stress state of sliding surface and the sliding direction of slope is the key to analyzing the stability of slope using the method of vector sum. The stress of any point on fixed sliding surface of arbitrary shape is ascertained based on the principle of minimum potential energy, and the normal stress and shear stress of sliding surface are obtained through the virtual displacement which produces minimum potential energy. Meanwhile, the slide-resistance direction of micro-unit is calculated by regarding the overall motion trend of the slope as in the opposite direction of the vector sum of the slide-resistance direction. Moreover, the ratio of slide-resistance to sliding stress which are acquired from projecting all the forces on the slope in the sliding direction is defined as the safety factor of slope. Compared to previous researches, the present method does not need to assume a major slide surface, and therefore, avoids the confirmation of initial sliding direction. The method is applied to calculating the safety factor, slide direction and normal stress of two classical calculation examples and also in a practical project. The results of two calculation examples verify the rationality of the present method; in practical engineering, the calculation result is also consistent with those of other methods.
关键词
边坡 /
滑动方向 /
稳定性 /
矢量和 /
安全系数
Key words
slope /
sliding direction /
stability /
vector sum /
safety factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王兴威,王正中,刘铨鸿,等.坡向加速度法在边坡稳定分析中的应用[J].长江科学院院报,2020,37(5):157-162.
[2] MAULDON M, URETA J. Stability of Rock Wedge with Multiple Sliding Surface[J]. Canadian Geotechnical Journal, 1999,14(1): 51-56.
[3] 刘艳章. 边坡与坝基抗滑稳定的矢量和分析法研究[D]. 武汉:中国科学院武汉岩土力学研究所, 2007.
[4] 李小强. 最小势能法在二维边坡稳定性分析中的应用[D]. 长沙: 中南大学, 2003.
[5] 王明华, 李小强, 白世伟. 基于GIS和最小势能原理的斜坡稳定性三维分析[J]. 岩石力学与工程学报, 2005, 24(13): 2376-2379.
[6] 李 铀, 陆 洋, 李 妮, 等. 锚杆(索)加固边坡的最小势能稳定性分析方法研究[J]. 岩土力学, 2008, 29(9): 2329-2334.
[7] 孙加平,卜伟斐,胡金木,等.二维边坡稳定性分析的最小势能法新解[J].力学与实践,2017,39(4):349-353.
[8] 温树杰, 罗 惠, 李 铀, 等. 基于最小势能原理的三维边坡稳定性分析[J]. 岩石力学与工程学报, 2015, 34(增刊 1): 3298-3305.
[9] 温树杰,宋亮亮,梁 超.考虑桩体变形的最小势能边坡稳定性分析方法[J].工业建筑,2017,47(6):90-94.
[10]葛修润. 用PC型微机对岩体工程课题进行有限元分析[C]//第一届全国计算岩土力学研讨会论文集.成都:西南交通大学出版社, 1987:74-85.
[11]刘艳章,葛修润,李春光,等.基于矢量法安全系数的边坡与坝基稳定分析[J].岩石力学与工程学报,2007,26(10):2130-2140.
[12]郭明伟, 葛修润, 李春光, 等. 边坡和坝基抗滑稳定分析的三维矢量和法及其工程应用[J]. 岩石力学与工程学报, 2010, 29(1): 8-20.
[13]孙加平, 温树杰, 梁 超, 等. 改进的三维边坡最小势能稳定性分析方法[J]. 中国安全生产科学技术, 2016, 12(1): 17-22.
[14]ZHANG X. Three-dimensional Stability Analysis of Concave Slopes in Plan View[J]. Journal of Geotechnical Engineering, 1988, 114(6): 658-671.
[15]郑 宏.严格三维极限平衡法[J].岩石力学与工程学报,2007,26(8):1529-1537.
[16]张均锋.三维简化Janbu法分析边坡稳定性的扩展[J].岩石力学与工程学报,2004,23(17):2876-2881.
基金
江西省教育厅科学技术研究项目(GJJ191524)