土性参数变异性较大是堤防工程风险管理面临的问题之一。在分析土体渗透系数空间变异性的基础上,通过随机数值模拟研究了堤防渗流场统计特征和堤基渗透稳定性。将土体渗透系数作为随机场,采用转动带法进行随机抽样模拟,通过蒙特卡罗方法分析渗流场分布,并计算堤基渗透失稳概率,结合堤防工程进行了计算分析。结果表明,渗透系数的空间变异性对渗流场有较大影响,随渗透系数和临界比降的变异性增大,容易造成局部渗流集中,堤基渗透失稳概率增大。
Abstract
The significant spatial variability of soil property is a difficult problem for risk management of levee. On the basis of analyzing the spatial variability of soil permeability, the statistical characteristic of seepage field and seepage stability of levee foundation is studied by stochastic numerical method. Random field model is adopted for soil permeability, and the turning bands method is employed to simulate the permeability random field. The distribution of seepage field and probability of seepage failure are evaluated by Monte-Carlo method. The presented approach is applied to a case study. Results imply that the spatial variability of soil permeability has great impact on seepage field; with the increase of variation of permeability and critical gradient, local seepage is highly concentrated, and seepage failure probability of levee foundation also increases.
关键词
堤防渗流 /
渗透系数 /
空间变异性 /
渗透稳定 /
数值模拟
Key words
levee seepage /
permeability /
spatial variability /
seepage stability /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵寿刚, 常向前, 潘 恕. 黄河标准化堤防渗流稳定可靠性分析[J]. 岩土工程学报, 2007, 29(5): 684-689.
[2] VANMARCKE E H. Random Fields: Analysis and Synthesis[M]. Cambridge, Massachusetts: The MIT Press, 1984.
[3] GRIFFITHS D V, FENTON G A. Seepage beneath Water Retaining Structures Founded on Spatially Random Soil[J]. Geotechnique, 1993, 43(4): 577-587.
[4] 夏均民, 王 媛. 随机渗流场水头分布影响因素数值分析[J]. 三峡大学学报(自然科学版), 2009, 31(1): 1-5.
[5] 曹敦侣, 曹 罡, 邹火元,等. 水工建筑物渗流管涌的Monte-Carlo模拟[J]. 人民长江, 1997, 28(6): 11-13.
[6] 张任铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005.
[7] FREEZE R A. A Stochastic Conceptual Analysis of One Dimensional Groundwater Flow in Nonuniform Homogeneous Media[J]. Water Resources Research, 1975, 11(5): 725-741.
[8] SUDICKY E A. A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: Spatial Variability of Hydraulic Conductivity and Its Role in the Dispersion Process[J].Water Resources Research,1986,22(13):2069-2082.
[9] 蔡树英, 杨金忠, 伍靖伟. 土壤渗透参数空间变异性的试验研究[J]. 中国农村水利水电, 2002(11): 13-16.
[10]李少龙, 张家发, 张 伟,等. 表层土渗透系数空间变异与随机模拟研究[J]. 岩土力学, 2009, 30(10): 3168-3172.
[11]黄冠华. 土壤水力特性空间变异的试验研究进展[J]. 水科学进展, 1999, 10(4): 450-457.
[12]杨金忠, 蔡树英, 黄冠华,等. 多孔介质中水分及溶质运移的随机理论[M]. 北京: 科学出版社, 2000.
[13]MANTOGLOU A. Digital Simulation of Multivariate Two and Three Dimensional Stochastic Processes with a Spectral Turning Bands Method[J]. Mathematical Geology, 1987, 19(2): 129-149.
[14]包承纲, 高大钊, 张庆华. 地基工程可靠度分析方法研究[M]. 武汉: 武汉测绘科技大学出版社, 1997.
基金
国家重点研发计划项目(2017YFC1502606);中央级公益性科研院所基本科研业务费项目(CKSF2017038/YT)