为解决利用机载激光测深(Airborne LiDAR bathymetry, ALB)波形数据估计水体含沙量(Suspended Sediment Concentration, SSC)难题,提出了一种利用ALB三维点云数据反演水体含沙量的新方法。首先,基于绿激光水面点和红外激光水面点计算绿激光水面穿透量;其次,利用实测水体含沙量及对应绿激光水面穿透量构建SSC经验模型;最后,基于构建的SSC经验模型实现了利用ALB三维点云的水体含沙量估计。实验验证了该方法的有效性,取得了优于20 mg/L的SSC反演精度,为水体含沙量信息的高精度、大区域面获取提供了一种新途径。
Abstract
High-precision estimation of sediment concentration in water can be achieved by using the waveform data of airborne LiDAR bathymetry (ALB). However, waveform data is difficult to be obtained and utilized. In view of this, a simple method to retrieve the sediment concentration using ALB 3D point cloud data is proposed. Firstly, the green laser water surface penetration is calculated based on the green laser water surface point and the infrared laser water surface point. Secondly, the empirical model of Suspended Sediment Concentration (SSC) is constructed by using the measured SSC and the corresponding green laser water surface penetration. Finally, the sediment content of the lower water body is obtained conveniently by the constructed SSC empirical model. Experimental results validate that the method is effective and has the inversion accuracy of SSC better than 20 mg/L. The proposed method provides a simple and fast approach to estimate SSC.
关键词
水体含沙量 /
机载激光测深 /
红外激光 /
绿激光 /
水面穿透量 /
三维点云数据 /
水面不可靠问题
Key words
Suspended Sediment Concentration (SSC) /
Airborne LiDAR Bathymetry (ALB) /
IR laser /
green laser /
near water surface penetration(NWSP) /
3D point cloud data /
water surface uncertainty
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VOLPE V, SILVESTRI S, MARANI M. Remote Sensing Retrieval of Suspended Sediment Concentration in Shallow Waters[J]. Remote Sensing of Environment, 2011, 115(1): 44-54.
[2] GUILLÉN J, PALANQUES A, PUIG P, et al. Field Calibration of Optical Sensors for Measuring Suspended Sediment Concentration in the Western Mediterranean[J]. 2000, 64(4): 427-435.
[3] GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et al. Meeting the Accuracy Challenge in Airborne Bathymetry[C]∥Proceedings of EARSeL-SIG-Workshop LIDAR. June 16-17, 2000.
[4] 刘焱雄,郭 锴,何秀凤,等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版),2017,42(9): 1185-1194.
[5] ZHAO X L,ZHAO J H,ZHANG H M, et al. Remote Sensing of Suspended Sediment Concentrations Based on the Waveform Decomposition of Airborne LiDAR Bathymetry[J]. Remote Sensing, 2018, 10(2): 247.
[6] 赵兴磊.机载激光高精度测深及水体含沙量反演研究[D].武汉:武汉大学, 2018.
[7] GUENTHER G C.Airborne Laser Hydrography:System Design and Performance Factors[R].Rockville, Md: Charting and Geodetic Services, National Ocean Service,1985.
[8] MANDLBURGER G, PFENNIGBAUER M, PFEIFER N. Analyzing Near Water Surface Penetration in Laser Bathymetry: A Case Study at the River Pielach[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 1(2): 175-180.
[9] ZHAO J H, ZHAO X L, ZHANG H M, et al. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model[J]. Remote Sensing, 2017, 9(5):426.
[10]赵建虎.海底地形测量技术现状及发展趋势[J].测绘学报,2017,46(10):588-596.
[11]RAMNATH V, FEYGELS V, KOPILEVICH Y, et al. Predicted Bathymetric LiDar Performance of Coastal Zone Mapping and Imaging Lidar (CZMIL)[J]. Proceedings of SPIE—The International Society for Optical Engineering, 2010, 7695(97): 769511.
基金
上海市科学技术委员会重点研发计划项目(17DZ1204900);上海市水务局(海洋局)科研项目(沪海科2018-04)