为更加深入研究不同竖向荷载作用下大直径嵌岩灌注桩的承载特性与荷载传递规律,以印尼地区某工程为依托,对3根直径为800 mm的嵌岩灌注桩进行单桩竖向抗压静载试验与桩身应力测试。试验结果表明:3根试桩的Q-s曲线均为缓变型,沉降量均不超过17 mm,回弹率较大,介于54.8%~70.9%之间,残余沉降较小,承载力较高,均满足设计要求。桩身轴力随桩顶荷载的增加逐渐增大,随深度逐渐递减;桩侧摩阻力的发挥具有异步性,随着荷载的增大,桩侧摩阻力逐渐发挥,在嵌岩段桩侧摩阻力最大,但仍未充分发挥;桩端阻力随桩顶荷载的增加近似呈线性增大,在最大荷载作用下,桩端阻力占比约55%,表现出摩擦端承桩的特性。研究结果对国内桩基规范的完善以及当地桩基规范的制订具有较重要的意义。
Abstract
The bearing characteristics and load transfer mechanism of rock-socketed pile of large diameter under different vertical loads were researched via vertical compression static load test and pile stress test on three rock-socketed cast-in-place piles with diameter of 800 mm in a project in Indonesia. Test results show that the Q-s curves of the three test piles changed slowly, with settlement smaller than 17 mm, large rebound rate ranging from 54.8% to 70.9%, and small residual settlement as well as large bearing capacity, all meeting design requirements. The axial force of pile shaft gradually increased with the rising of the load on pile top, and gradually decreased along with depth. The change of side frictional resistance of pile was asynchronous: as load increased, the side frictional resistance gradually developed to the maximum in the rock-socketed segment, which, however, was still not fully utilized. The pile end resistance increased linearly with the increase of load on pile top. Under the maximum load, the pile end resistance ratio accounted for about 55%. The research results are helpful to the improvement of domestic pile foundation specifications and the formulation of local pile foundation specifications.
关键词
嵌岩灌注桩 /
静载试验 /
承载力预测 /
桩侧摩阻力 /
桩端阻力 /
印尼地区
Key words
rock-socketed pile /
static load test /
forecast of bearing capacity /
side frictional resistance of pile /
pile end resistance /
Indonesia area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ALAVI A H, SADROSSADAT E. New Design Equations for Estimation of Ultimate Bearing Capacity of Shallow Foundations Resting on Rock Masses[J]. Geoscience Frontiers, 2016, 7(1): 91-99.
[2] KULKARNI R U,DEWAIKAR D M. A Numerical Approach to Assess the Capacity of Rock-socketed Piles Subjected to Axial Compression in Mumbai Region Based on the Pile Load Test Data[J]. International Journal of Geotechnical Engineering, 2017, 11(5): 441-451.
[3] 柯 洪, 吴 翔, 王继华, 等. 天津厚地层超长钻孔灌注桩单桩承载特性研究[J]. 岩土力学, 2011, 32(9): 2821-2826.
[4] 张 琦, 刘 军, 戴国亮, 等. 大直径嵌岩桩桩端极限承载力计算方法[J]. 东南大学学报(自然科学版), 2018, 48(1): 118-124.
[5] RADHAKRISHNAN R, LEUNG C F. Load Transfer Behavior of Rock-socketed Piles[J]. Journal of Geotechnical Engineering, 1989, 115(6): 755-768.
[6] CARRUBBA P. Skin Friction on Large-diameter Piles Socketed into Rock[J]. Canadian Geotechnical Journal, 1997, 34(2): 230-240.
[7] ARMAGHANI D J, RAJA R S N S B, FAIZI K,et al. Developing a Hybrid PSO-ANN Model for Estimating the Ultimate Bearing Capacity of Rock-socketed Piles[J]. Neural Computing and Applications, 2017, 28(2): 391-405.
[8] 闫 楠, 白晓宇, 水伟厚, 等. 大直径超长冲孔灌注桩竖向抗压承载特性原位测试研究[J]. 中南大学学报(自然科学版), 2015, 46(7): 2571-2580.
[9] 王卫东, 吴江斌, 聂书博. 武汉绿地中心大厦大直径嵌岩桩现场试验研究[J]. 岩土工程学报, 2015, 37(11): 1945-1954.
[10]白晓宇, 牟洋洋, 张明义, 等. 风化岩基大直径灌注桩后注浆承载性能试验研究[J]. 土木与环境工程学报(中英文), 2019, 41(2): 1-11.
[11]白晓宇, 张明义, 朱 磊, 等. 强风化花岗岩中嵌岩短桩承载特征原位试验与有限元分析[J]. 中南大学学报(自然科学版), 2017, 48(2): 512-524.
[12]JGJ 106—2014,建筑基桩检测技术规范[S]. 北京: 中国建筑工业出版社, 2014.
[13]XING H, ZHANG Z, MENG M, et al. Centrifuge Tests of Superlarge-diameter Rock-socketed Piles and Their Bearing Characteristics[J]. Journal of Bridge Engineering, 2014, 19(6): 1-10.
[14]陈 筠, 王鹏程, 季永新, 等. 较破碎岩体中桩基竖向承载力分析与探讨[J]. 长江科学院院报, 2016, 33(10): 98-101.
[15]YU R. The Bearing Characteristics of Large Diameter Rock Socketed Pile[J]. International Journal of Intelligent Information and Management Science, 2015, 4(3): 34-35.
[16]陈小钰, 张明义, 白晓宇, 等. 深厚回填土中嵌岩灌注桩承载性状现场试验研究[J]. 中南大学学报(自然科学版), 2018, 49(7): 1799-1807.
[17]陈小钰, 张明义, 白晓宇. 人工挖孔嵌岩灌注桩承载特性现场试验与机理分析[J]. 土木建筑与环境工程, 2017, 39(5): 79-86.
[18]苗德滋, 张明义, 白晓宇. 大直径泥浆护壁嵌岩灌注桩承载特征性现场试验[J]. 工程建设, 2018, 50(4): 6-10.
[19]邓志勇, 陆培毅. 几种单桩竖向极限承载力预测模型的对比分析[J]. 岩土力学, 2002, 23(4): 428-431.
[20]俞宗卫, 许 魁, 李 祯. 几种单桩极限承载力预测模型的验证分析[J]. 工业建筑, 2007, 37(8): 64-67.
[21]俞 峰, 张忠苗. 混凝土开口管桩竖向承载力的经验参数法设计模型[J]. 土木工程学报, 2011, 44(7): 100-110.
[22]白晓宇, 张明义, 寇海磊, 等. 基于BP神经网络的静压桩承载力时间效应预测[J]. 工程勘察, 2014, 42(4): 7-11.
[23]KOU H, GUO W, ZHANG M, et al. Axial Resistance of Long Rock-socketed Bored Piles in Stratified Soils[J]. Ocean Engineering, 2016, 114(3): 58-65.
[24]JGJ 94—2008,建筑桩基技术规范[S].北京: 中国建筑工业出版社, 2008.
[25]邵明成, 喻祖洪. 钻孔扩底灌注桩在杭州地区的应用[J]. 城市勘测, 2009(2):147-149.
基金
国家自然科学基金项目(51708316,51778312,51809146);山东省重点研发计划项目(2017GSF16107,2018GSF117008);山东省博士后创新项目(201903043);山东省高等学校科技计划项目(J16LG02);青岛市博士后应用研究项目(2018101);中国博士后科学基金面上项目(2018M632641)