依据精度相近亦即试块数相近原则对现场抗剪试验数据适当分段,基于数理统计理论,首先推导并提出了由现场抗剪试块正应力和剪应力直接计算岩基摩擦系数与凝聚力统计参数的新公式;然后根据岩基抗剪试验特点,结合概率论随机模拟方法与线性代数正交变换理论,提出了一种验证试块法的计算机随机模拟测评方法。该方法也可应用于其他考虑了试块抗剪强度离散性的摩擦系数与凝聚力概率统计方法的验证。通过应用该计算机随机模拟测评方法,对有关试块法进行了验证分析,论证了提出的新公式的正确性,探讨了本文试块法所需的最少试块数量。最后还进行了一系列具体工程抗剪强度参数的统计计算分析,给出了摩擦系数与凝聚力的若干统计特点。
Abstract
According to experimental data fragments by the principle of close precision, namely, close number of test blocks, and based on mathematical statistics theory, we derived formulas for calculating the statistical parameters of the frictional coefficient and cohesion of rock foundations directly from the normal stress and shear stress on the shear plane of each block in the in-situ shear test. The method takes into consideration the correlation between frictional coefficient and cohesion. In subsequence, in line with the random simulation method of probability theory and the orthogonal transformation theory of linear algebra, we proposed a computational random simulation evaluation method for verifying test block methods according to the characteristics of shear test. The method can also be applied to the verification of other probability statistical methods of frictional coefficient and cohesion considering the discretization of shear strength of test blocks. By applying the computational random simulation method, we evaluated some test block methods and verified the validity of the proposed formulas. We also discussed the total number of minimum test blocks for the test block method. Finally, shear strength parameters of some engineering examples are analyzed statistically, and some statistical characteristics of friction coefficient and cohesion are given.
关键词
岩基 /
抗剪强度参数 /
概率统计分析 /
试块法 /
随机模拟测评方法 /
试验数据分段
Key words
foundation rock /
shear strength parameters /
statistical analysis of probability /
test block method /
random simulation evaluation method /
test data fragments
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HARIRI-ARDEBILI M A. Risk, Reliability, Resilience (R3) and beyond in Dam Engineering: A State-of-the-art Review[J]. International Journal of Disaster Risk Reduction, 2018, 31(10):806-831.
[2] DL/T 5368—2007,水利水电工程岩石试验规程[S]. 北京: 中国电力出版社,2007.
[3] 光耀华. 坝基岩石抗剪断参数的统计特征[J]. 岩石力学与工程学报,1989,8(2):151-162.
[4] 汪小刚,董育坚. 岩基抗剪强度参数[M].北京: 中国水利水电出版社,2010.
[5] 高大钊. 土的抗剪强度指标的统计方法[J].工程勘察,1986(4):1-5.
[6] 光耀华. 岩石抗剪强度指标的概率分析[J].岩石力学与工程学报,1994,13(4):349-355.
[7] 黄传志, 孙万禾. 土的抗剪强度指标统计方法的探讨[J].水运工程,1989(1):45-51.
[8] 孙万禾,黄传志,叶国良,等.土的抗剪强度指标统计方法的分析[J]. 港口工程,1996(3):5-16.
[9] JTS 147-1—2010,港口工程地基规范[S].北京:人民交通出版社,2010.
[10]赖国伟. 岩基材料强度的随机-临界研究[D].武汉: 武汉水利水电学院,1990.
[11]吴 坚. 应用概率统计[M].北京: 高等教育出版社,2007.
[12]范明桥,盛金保.土强度指标φ,c的互相关性[J].岩土工程学报,1997(4): 100-114.
[13]周维垣.高等岩石力学[M]. 北京:中国水利水电出版社,1990.
[14]杨 强,陈 新,周维垣. 抗剪强度指标可靠度分析[J]. 岩石力学与工程学报,2002,21(6): 868-873.
[15]唐崇禄.蒙特卡罗方法理论和应用[M].北京:科学出版社,2015.
基金
国家重点研发计划项目(2018YFC1508503)