基于Logistic回归模型的膨胀土判别与分类

高卫东

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (6) : 153-155,178.

PDF(1905 KB)
PDF(1905 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (6) : 153-155,178. DOI: 10.11988/ckyyb.20190094
岩土工程

基于Logistic回归模型的膨胀土判别与分类

  • 高卫东
作者信息 +

Discrimination and Classification of Expansive Soil Based on Logistic Regression Model

  • GAO Wei-dong
Author information +
文章历史 +

摘要

采用《公路工程地质勘察规范》(JTG C20—2011)推荐的自由膨胀率、塑性指数、标准吸湿含水率作为膨胀土判别与分类指标,将膨胀潜势分为非、弱、中等、强膨胀土4个等级。以某高速公路沿线土样为例,利用SPSS软件建立了土膨胀潜势分级的有序Logistic回归模型,并利用所建模型对待判土样进行判别,结果与实际一致。研究结果表明:有序Logistic回归模型的判别性能良,能客观反映膨胀土分类的复杂状况,具有较好的工程应用前景。

Abstract

According to Code for highway engineering geological investigation (JTG C20—2011), three indices, namely, free expansion rate, plasticity index, and water content of soil under standard moisture absorption, were selected as the factors for synthetic evaluation of expansive soil. The swelling potential of expansive soil was divided into four grades: non-expansive, weakly expansive soil, moderately expansive, and strongly expansive. With the soil samples along a highway as an example, the ordinal Logistic regression model of swelling potential classification was established by using SPSS software and was applied to testing other cases. The predicted results were in good agreement with the actual. The results indicate that the ordinal Logistic regression model performs excellently, and can objectively reflect the complicated situation of expansive soil classification, thus is of good prospect in practical engineering.

关键词

膨胀土 / 膨胀潜势 / 有序Logistic回归 / 判别与分类 / SPSS

Key words

expansive soil / swelling potential / ordinal Logistic regression / discrimination and classification / SPSS

引用本文

导出引用
高卫东. 基于Logistic回归模型的膨胀土判别与分类[J]. 长江科学院院报. 2020, 37(6): 153-155,178 https://doi.org/10.11988/ckyyb.20190094
GAO Wei-dong. Discrimination and Classification of Expansive Soil Based on Logistic Regression Model[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(6): 153-155,178 https://doi.org/10.11988/ckyyb.20190094
中图分类号: TU443   

参考文献

[1] 汪明武,金菊良,李 丽.可拓学在膨胀土胀缩等级评判中的应用[J]. 岩土工程学报, 2003,25(6):754-757.
[2] 傅鹤林,范臻辉,刘宝琛.利用人工神经网络模型判定膨胀土等级[J].中国铁道科学, 2002, 23(5): 118-120.
[3] 黄 卫,钟 理,钱振东.路基膨胀土胀缩等级的模糊评判[J].岩土工程学报, 1999, 21(4): 408-413.
[4] 丁加明,王永和,丁力行.基于粗糙集的膨胀土分级指标重要性分析[J].岩土力学,2006,27(9):1514-1518.
[5] 陈善雄,余 颂,孔令伟,等.膨胀土判别与分类方法探讨[J].岩土力学,2005,26(12):1895-1900.
[6] 陈建宏,李小龙,梁伟章.膨胀土分类的 PCA- ELM模型及应用[J].长江科学院院报,2018,35(12):96-101.
[7] JTG C20—2011, 公路工程地质勘察规范[S]. 北京:中国计划出版社,2011.
[8] 姚海林,杨 洋,程 平,等. 膨胀土壤标准吸湿含水率及其试验方法[J].岩土力学,2004, 25(6): 856-859.
[9] 王济川,郭志刚.Logistic回归模型:方法与应用[M]//当代科学前沿论丛.北京:高等教育出版社,2001:59-62,76.
[10]余 颂,陈善雄,余 飞,等.膨胀土判别与分类的Fisher判别分析方法[J].岩土力学,2007,28(3):499-504.
[11]薛 薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2013:235-241.
[12]张菊连,沈明荣.岩体分级的多分类有序因变量Logistic回归模型[J].同济大学学报(自然科学版),2011,39(4):507-511.

PDF(1905 KB)

Accesses

Citation

Detail

段落导航
相关文章

/