为探究水岩耦合条件下的声发射规律,通过开展干燥与饱水灰岩单轴压缩条件下的声发射监测试验,并结合快速傅里叶变换、短时傅里叶变换与离散小波变换这3种常用的声发射信号分析方法,对比分析了干燥与饱水灰岩的时域参数、频率特征与典型破裂信号的时频特征。结果表明:水对于岩石的变形破坏特征影响显著,相对于干燥状态,饱水试样的单轴抗压强度下降明显,且幅值、能量以及振铃计数等基本时域特征参数均呈现出大幅降低的特点;岩样破坏前,干燥与饱水灰岩都表现出由“高主频、低幅值”向“低主频、高幅值”过渡的总体变化趋势;干燥岩样破坏前主频值高于饱水岩样,完全破坏后却低于饱水岩样,主频下降幅度大,而饱水岩样的主频值波动较小,频率较为稳定。研究结果对于工程尺度的防突机构声发射监测具有一定的参考价值。
Abstract
Acoustic emission monitoring of dry and water-saturated limestone under uniaxial compression was performed in this research to explore the acoustic emission law under water-rock coupling conditions. Signal analysis method inclusive of fast Fourier transform, short-time Fourier transform, and discrete wavelet transform were adopted to compare and analyze the time domain, frequency domain and time-frequency characteristics of the dry and water-saturated limestone specimens. Results showed that water had a notable influence on the deformation and failure characteristics of limestone. Compared with that in dry state, limestone in water-saturated state had markedly lower uniaxial compressive strength and basic time domain characteristic parameters such as amplitude, energy and ringing count. Before failure, the dry and water-saturated limestones both presented an overall trend of transition from “high main frequency and low amplitude” to “low main frequency and high amplitude”. Before failure, the value of main frequency of dry limestone was higher than that of water-saturated limestone; whereas after complete destruction, the main frequency of dry limestone declined sharply and became lower than that of water-saturated limestone. The main frequency of water-saturated limestone was stable with small fluctuation.
关键词
饱水灰岩 /
干燥灰岩 /
单轴压缩 /
声发射 /
信号分析 /
主频
Key words
water-saturated limestone /
dry limestone /
uniaxial compression /
acoustic emission /
signal analysis /
dominant-frequency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李利平, 李术才, 石少帅, 等. 岩体突水通道形成过程中应力-渗流-损伤多场耦合机制[J]. 采矿与安全工程学报, 2012, 29(2):232-238.
[2] 李术才, 许新骥, 刘征宇, 等. 单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J]. 岩石力学与工程学报, 2014, 33(1):14-23.
[3] LOCKNER D. The Role of Acoustic Emission in the Study of Rock Fracture[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(7):883-899.
[4] COX S J D, MEREDITH P G. Microcrack Formation and Material Softening in Rock Measured by Monitoring Acoustic Emissions[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(1): 11-24.
[5] MANSUROV V A. Acoustic Emission from Failing Rock Behaviour[J]. Rock Mechanics and Rock Engineering, 1994, 27(3):173-182.
[6] 文圣勇, 韩立军, 宗义江, 等. 不同含水率红砂岩单轴压缩试验声发射特征研究[J]. 煤炭科学技术, 2013, 41(8):46-48.
[7] 唐书恒,颜志丰,朱宝存,等. 饱和含水煤岩单轴压缩条件下的声发射特征[J]. 煤炭学报,2010,35(1):37-41.
[8] 傅 晏, 刘新荣, 张永兴, 等. 水岩相互作用对砂岩单轴强度的影响研究[J]. 水文地质工程地质, 2009, 36(6):54-58.
[9] 王晓南, 陆菜平, 薛俊华, 等. 煤岩组合体冲击破坏的声发射及声发射效应规律试验研究[J]. 岩土力学, 2013(9):2569-2575.
[10]夏 冬, 杨天鸿, 王培涛, 等. 干燥及饱和岩石循环加卸载过程中声发射特征试验研究[J]. 煤炭学报, 2014, 39(7):1243-1247.
[11]杨丽娟, 张白桦, 叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程, 2004, 31(增刊1):1-3.
[12]CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC Coupled Numerical Simulation of AE in Large-scale Underground Excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.
[13]贾雪娜, 姜全果, 何满潮, 等. 莱州花岗岩应变岩爆实验声发射频谱特征分析[J].地下空间与工程学报, 2018,14(1):51-57.
[14]黄 斌, 张宏兵, 王 强,等. 广义S变换与短时傅里叶变换在地震时频分析中的对比研究[J]. 中国煤炭地质, 2017, 29(1):59-63.
基金
国家自然科学基金项目(51679131);水文水资源与水利工程科学国家重点实验室开放研究基金项目(2016zd13);齐鲁交通发展集团有限公司科技项目(2016B36)