为了更好地将风积沙用作辅助胶凝材料,采用激发剂与风积沙一体化磨粉的方式,对风积沙进行活化试验。试验结果表明:风积沙微粉等质量替代30%水泥时,碱类与醇胺类激发剂对风积沙微粉的活化效果好于硫酸盐类激发剂;通过正交试验确定的复合激发剂能显著提高风积沙微粉胶砂的后期抗压强度,7 d抗压强度比提高了11%,28 d提高了13%;对风积沙微粉28 d的水化产物进行SEM试验,发现掺复合激发剂风积沙微粉胶砂试件生成物中存在丰富的纤维团簇状C-S-H凝胶与细长柱状AFt晶体相互交织,形成空间网状结构,填充在孔隙中,使胶砂试件结构致密。研究成果可为以后风积沙微粉的工程应用提供技术理论依据。
Abstract
To better use aeolian sand as auxiliary cementitious material, we prepared specimens by grinding aeolian sand together with different activators respectively to test the compressive strength of cemented aeolian sand powder. Results demonstrated that the activation effect of alkali and alcohol-amine activators on aeolian sand powder is better than that of sulfate activator when 30% cement is replaced by aeolian sand powder in an identical proportion. Composite activator determined by orthogonal test could enhance the 7 d compressive strength ratio of the cemented sand specimen by 11% and the 28 d ratio by 13%. Furthermore, we found abundant interlaced fiber cluster C-S-H gel and slender columnar AFt crystal from the SEM images of the 28 d hydration products of aeolian sand powder. A spatial reticular structure is formed and pores are filled, which compacts the structure of the cemented sand specimen.
关键词
风积沙微粉 /
激发剂 /
辅助胶凝材料 /
活性 /
抗压强度 /
正交试验
Key words
aeolian sand powder /
activator /
auxiliary cementitious material /
activity /
compressive strength /
orthogonal test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵计辉.钢渣的粉磨/水化特征及其复合胶凝材料的组成与性能[D].北京:中国矿业大学(北京),2015.
[2] WANG G, WANG Y H, GAO Z L. Use of Steel Slag as a Granular Material: Volume Expansion Prediction and Usability Criteria[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 555-560.
[3] 蒋晓星,孙振平,杨正宏,等.风积沙的特性及应用[J].粉煤灰综合利用,2018(1):65-69.
[4] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998,1(1):1-7.
[5] 董 伟,申向东,林艳杰,等.风积沙的掺入对浮石轻骨料混凝土性能的影响[J].硅酸盐通报,2015,34(8):2089-2094.
[6] 王瑞兰,蒋文莉,李庚英.化学激发剂对钢渣体系的激发效果研究[J].水科学与工程技术,2018(4):12-15.
[7] 李 凯,朱炎宁,沈忠雪,等.风积沙石粉在混凝土中应用可行性研究[J].商品混凝土,2015(5):45-47.
[8] GB/T 1596—2017,用于水泥和混凝土中的粉煤灰[S].北京:中国标准出版社,2017.
[9] GB/T 17671—1999,水泥胶砂强度检验方法(ISO法)[S].北京:中国标准出版社,1999.
[10]方军良,陆文雄,徐彩宣.粉煤灰的活性激发技术及机理研究进展[J].上海大学学报(自然科学版),2002,8(3):255-260.
[11]柯国军,杨晓峰,彭 红,等.化学激发粉煤灰活性机理研究进展[J].煤炭学报,2005,30(3):366-370.
[12]于继寿,李仁福,隋成飞,等.酸碱激活粉煤灰的研究[J].粉煤灰综合利用,2000(2):26-27.
[13]卫国强.激发剂对不同掺量粉煤灰复合胶凝材料强度的影响研究[D].西安:西安建筑科技大学,2009.
[14]彭家惠,林芳辉.二水石膏粉煤灰胶结材的研究[J].混凝土与水泥制品,1995(6):16-19.
[15]乔秀臣,林宗寿,寇世聪,等.化学激发剂对废弃粗粉煤灰火山灰活性的影响[J].武汉理工大学学报,2004,26(4):42-44,48.
[16]李端乐,王栋民,郑大鹏.化学激发剂对大掺量循环流化床粉煤灰水泥力学性能的影响[J].科学技术与工程,2017,17(29):120-127.
[17]蔺喜强,王栋民,许晨阳,等.硫酸盐类及氯盐类激发剂对粉煤灰活性的影响[J].粉煤灰,2012,24(1):4-7.
[18]马保国,许永和,董荣珍.三乙醇胺对水泥初始结构和力学性能的影响[J].建筑材料学报,2006,9(1):6-9.
[19]李 斌,高 生,路 兰.防腐阻锈剂和矿物掺合料对复合胶凝材料性能与水化特性的影响[J].硅酸盐通报,2018,37(5):1595-1599.
[20]赵晓刚.水化硅酸钙的合成及其组成、结构与形貌[D].武汉:武汉理工大学,2010.