微型桩抗弯承载力试验研究

陈再谦, 帅世杰, 蒲黍絛, 张丽华, 饶军应, 刘灯凯, 谢财进

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (2) : 100-105.

PDF(9716 KB)
PDF(9716 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (2) : 100-105. DOI: 10.11988/ckyyb.20181056
岩土工程

微型桩抗弯承载力试验研究

  • 陈再谦1, 帅世杰1, 蒲黍絛1, 张丽华1, 饶军应2, 刘灯凯2, 谢财进2
作者信息 +

Experimental Study on Flexural Bearing Capacity of Micropiles

  • CHEN Zai-qian1, SHUAI Shi-jie1, PU Shu-tao1, ZHANG Li-hua1, RAO Jun-ying2, LIU Deng-kai2, XIE Cai-jin2
Author information +
文章历史 +

摘要

对于存在安全隐患且急需抢险处治的的滑坡、路堤边坡、基坑等救灾工程,坡体稳定性差,传统支挡结构难以实现快速施作,而微型桩具有明显优越性。但不同形式的微型桩,其承载力及破坏特征不同。通过改进yas-2000型压力试验机,并将其用于测试钢筋混凝土桩、钢管混凝土配钢筋桩及钢管混凝土配工字钢桩的抗弯承载力,结果表明:①钢筋混凝土桩的受力全过程可分为3个阶段,即未裂阶段、裂缝阶段及破坏阶段;②钢管混凝土配钢筋桩及钢管混凝土配工字钢桩的受力过程可分为4个阶段,即压实阶段、弹性阶段、弹塑性阶段和强化阶段;③通过对比分析上述3种不同结构微型桩的荷载-位移曲线得出在3种不同结构的微型桩中,直径相同时钢管混凝土配工字钢桩的抗弯承载力最大,其极限弯矩值为209.21 kN·m。

Abstract

Micropile is superior to conventional retaining structures in the emergency treatment of landslide, embankment slope, or foundation pit with poor stability. Since the bearing capacity and failure characteristics of different micropiles vary, we improved the yas-2000 compression testing machine and applied it to measuring the flexural bearing capacity of three different micropiles: reinforced concrete pile, steel pipe concrete filled rebar pile, and steel pipe concrete filled I-beam pile. Results unveiled that the whole process of force acting on reinforced concrete pile can be divided according to three phases, namely, uncracked phase, cracked phase, and destruction phase. The stress process of steel pipe concrete filled rebar pile, and steel pipe concrete filled I-beam pile can be divided into four phases, compaction phase, elastic phase, elasto-plastic phase, and reinforcement phase. In addition, comparison of the load-displacement curves of these three micropiles revealed that given the same diameter, steel pipe concrete filled I-beam pile has the largest flexural bearing capacity with the ultimate bending moment reaching 209.21 kN·m.

关键词

微型桩 / 抗弯承载力 / 钢筋混凝土桩 / 钢管混凝土配钢筋桩 / 钢管混凝土配工字钢桩

Key words

micropiles / flexural capacity / reinforced concrete pile / steel pipe concrete filled rebar pile / steel pipe concrete filled I-beam piles

引用本文

导出引用
陈再谦, 帅世杰, 蒲黍絛, 张丽华, 饶军应, 刘灯凯, 谢财进. 微型桩抗弯承载力试验研究[J]. 长江科学院院报. 2020, 37(2): 100-105 https://doi.org/10.11988/ckyyb.20181056
CHEN Zai-qian, SHUAI Shi-jie, PU Shu-tao, ZHANG Li-hua, RAO Jun-ying, LIU Deng-kai, XIE Cai-jin. Experimental Study on Flexural Bearing Capacity of Micropiles[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(2): 100-105 https://doi.org/10.11988/ckyyb.20181056
中图分类号: TU758.11   

参考文献

[1] 卢书强, 易庆林, 易 武,等. 三峡库区树坪滑坡变形失稳机制分析. 岩土力学, 2014,35(4): 1123-1130.
[2] 张 明, 胡瑞林,殷跃平,等.川东缓倾红层中降雨诱发型滑坡机制研究.岩石力学与工程学报,2014,33(2):3783-3790.
[3] ZHANG Xu, TAN Ju-hong. Research on Majiagou Landslide Stability Analysis and Control Design[C]∥ Proceedings of the 2012 International Conference on Cybernetics and Informatics. Chongqing, China, September 21-23, 2012: 595-602.
[4] 刘传正. 中国崩塌滑坡泥石流灾害成因类型.地质论评, 2014, 60(4): 858-868.
[5] 谢建清. 滑坡治理方法及其应用实例. 地质与勘探, 1995(3): 28-32.
[6] SCHUSTER R L, KRIZEK R. Landslides: Analysis and Control. Washington DC: Transportation Research Board, 1978.
[7] ARMOUR T. Micropile Design and Construction Guidelines Implementation Manual. Washington DC: Federal Highway Administration, 2000.
[8] 周德培, 王焕龙, 孙宏伟, 等. 微型桩组合抗滑结构及其设计理论. 岩石力学与工程学报, 2009, 28(7): 1353-1362.
[9] 李昌龙. 山区公路滑坡微型桩受力机理及应用研究. 贵阳: 贵州大学, 2016.

基金

国家自然科学基金项目(51968010,51608141)

PDF(9716 KB)

Accesses

Citation

Detail

段落导航
相关文章

/