为获得毫秒(ms)级正弦波损伤变量预测模型,对岩样在不破坏情况下进行了不同波形不同频率的轴向力加卸载试验。提出了不同步时间段的定义,进而获得不同峰值荷载下不考虑不同步时间条件下的动态泊松比分别与即时荷载、即时横向长度、即时轴向高度之间的线性关系,从而得到线性关系中系数与峰值荷载间的拟合公式,即可联立不同已知条件,通过少量几个加载力峰值下的试验数据,对任意峰值荷载下动态泊松比与相关参数间的线性关系进行预测。以此为基础研究得到,在误差允许的范围内,采用动态泊松比与即时横向长度的线性关系,推导出体积应变、损伤变量的计算公式和方法,可以很好地对加卸载过程中岩样的体积应变、损伤的变化做出ms级的精确预测,也为在已知少量循环试验下获得岩石动态参数,即可对ms级的损伤进行精确预测的模型提供了方法。
Abstract
An accurate (millisecond level) prediction method for sandstone damage by determining the dynamic Poisson’s ratio is put forward in this paper. First of all, axial loading and unloading tests are performed on rock specimens under different waveforms at varied frequency on the prerequisite that failure does not occur. Tests reveal asynchronous lateral strain and axial strain, which give rise to dynamic Poisson’s ratio under cyclic loading and unloading. The time intervals of such asynchronous phenomenon are defined. The linear relations of dynamic Poisson’s ratio against instantaneous load, instantaneous transverse length, and instantaneous axial height under different load peaks are acquired without considering the asynchronous time. Hence, the fitting formula between relational coefficients and peak load can be obtained. Through only a small amount of test data at the peak of loading force, the linear relationship between dynamic Poisson’s ratio and relevant parameters at any peak load can be predicted. Furthermore, according to the linear relation between Poisson’s ratio and instantaneous lateral length, the equations and methods for volumetric strain and damage variable can be derived within allowable error range. The present model could precisely (at millisecond level) predict volumetric strain and damage variable of rock under cyclic loading and unloading with no need to measure displacement values when load type is known.
关键词
砂岩 /
加卸载试验 /
ms级损伤预测 /
正弦波 /
动态泊松比 /
体积应变
Key words
sandstone /
loading and unloading test /
damage prediction at millisecond scale /
sine wave /
dynamic Poisson’s ratio /
volumetric strain
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许 江,冯 涛,鲜学福,等.低应力水平下循环载荷对岩石杨氏模量影响的研究[J].湘潭矿业学院学报,2001,16(1):14-16.
[2] 葛修润,蒋 宇,卢允德,等.周期载荷作用下岩石疲劳应变特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
[3] 席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观伤[J].岩石力学与工程学报,2003,22(2):182-187.
[4] 陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
[5] 陈运平,刘干斌,姚海林.岩石滞后非线性弹性模拟的研究[J].岩土力学,2006,27(3):341-347.
[6] 席道瑛,陈运平,陶月赞,等.岩石的非线性弹性滞后特征[J].岩石力学与工程学报,2006,25(6):1086-1093.
[7] 肖建清,冯夏庭,丁德馨,等.常幅循环荷载作用下岩石的滞后及阻尼效应研究[J].岩石力学与工程学报,2010,29(8):1677-1683.
[8] 刘 杰,李建林,张玉灯,等.基于拟静力法的大岗山坝肩边坡地震工况稳定性分析[J].岩石力学与工程学报,2009,28(8):1562-1570.
[9] 刘 杰,李建林,屈建军,等.基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J].岩土力学,2010,31(11):3619-3626,3634.
[10]葛修润,卢应发.循环载荷作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
[11]葛修润,任建喜,蒲毅彬,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
[12]谢和平,彭瑞东,鞠 杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
[13]彭瑞东,谢和平,鞠 杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
[14]杨永杰,宋 扬,楚 俊.循环荷载作用下煤岩强度及变形特征试验研究[J].岩石力学与工程学报,2007,26(1):201-205.
[15]郭印同,赵克烈,孙冠华,等.周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学,2011,32(5):1353-1359.
[16]马林建,刘新宇,许宏发,等.循环荷载作用下盐岩三轴变形和强度特性试验研究[J].岩石力学与工程学报,2013,32(4):849-856.
[17]周小平,季 璇,钱七虎.强地震荷载作用下临水挡土墙的拟动力法稳定性分析[J].岩石力学与工程学报,2012,31(10):2071-2081.
[18]LIU Jie, LI Jian-lin, QU Jian-jun, et al. Research on Forecasting Model of Sandstone Deformation Rate during Wave Loading Segment under Lag Effect[J].Science China Technology Seiences,2010,53(5):1442-1449.
[19]刘 杰,李建林,唐 亮,等.三角波卸载段作用下钙质砂岩毫秒量级变形速率预测模型研究[J].岩土力学,2014,35(增刊1):63-70.
[20]陆明万,罗学富.弹性理论基础[M].2版.北京:清华大学出版社,2001.
基金
国家自然科学基金项目(51439003);国家自然科学基金面上项目(51579138);国家科技支撑计划项目(2015BAB07B08-01-01);成都理工大学地质灾害防治与地质环境保护国家重点实验室开放基金项目(SKLGP2016K023);湖北省教育厅资助项目(D20161202);长江科学院开放研究基金项目(CKWV2016377/KY);三峡大学硕士学位论文培优基金项目(2018SSPY038)