河湖淤泥絮凝沉降特性试验研究

王茜, 朱勇辉, 柴朝晖, 李凌云

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 13-17.

PDF(1903 KB)
PDF(1903 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 13-17. DOI: 10.11988/ckyyb.20180972
江湖泥沙与治理

河湖淤泥絮凝沉降特性试验研究

  • 王茜1,2, 朱勇辉1,2, 柴朝晖1,2, 李凌云1,2
作者信息 +

Experimental Research on Flocculation-Settling Property of Silt in Rivers and Lakes

  • WANG Xi1,2, ZHU Yong-hui1,2, CHAI Zhao-hui1,2, LI Ling-yun1,2
Author information +
文章历史 +

摘要

絮凝沉降性能是河湖疏浚淤泥资源化处理中重要且未完善的研究课题。以武汉沙湖、官桥湖及南湖3种淤泥为研究对象,通过沉降筒试验,利用清浑交界面沉降速度和上清液浊度研究了粒径分布、初始含沙量及高分子聚合物对河湖淤泥絮凝沉降特性的影响规律,并探讨了沉降筒尺寸对试验结果的影响。试验结果表明:河湖淤泥粒径越小,淤泥絮凝沉降越慢,上清液浊度越小;随初始含沙量的增加,河湖淤泥整体沉降速度变小,但当初始含沙量增加到一定值后,初始含沙量的影响作用开始变弱;高分子聚合物会促进河湖淤泥絮凝沉降;沉降筒尺寸虽然对试验结果略有影响,但对于分析河湖淤泥絮凝沉降特性无较大影响。研究河湖淤泥絮凝沉降特性对于河湖通航、蓄洪、水质修复、疏浚淤泥的处理均有重要意义。

Abstract

Flocculation-settling property is an important research subject to be improved in the treatment of river and lake dredging silt. The effects of particle size distribution, initial sediment concentration, and high-molecular polymer on flocculation and settling property of dredging silt were examined through settling experiments with the settling velocity of interface between clear and turbid liquid and turbidity of supernatant as indexes. The dredging silts from the Shahu Lake, Nanhu Lake, and Guanqiao Lake in Wuhan were taken as research object. Besides, the influence of settling column size on experiment result was also investigated. Results reveal that the smaller the particle size is, the slower the silt flocculates and settles, and the clearer the supernatant fluid is. The settling velocity decreases with the increase of initial sediment concentration; but the influence of initial sediment concentration weakens when it reaches a threshold value. High-molecular polymer promotes the flocculation-settling property of dredging silt. In addition, the size of settling column has little impact.

关键词

河湖淤泥 / 絮凝沉降 / 沉降筒试验 / 清浑交界面沉降速度 / 上清液浊度

Key words

silt in river and lake / flocculation and settling / settling experiment / settling velocity of interface between clear and turbid liquid / turbidity of supernatant

引用本文

导出引用
王茜, 朱勇辉, 柴朝晖, 李凌云. 河湖淤泥絮凝沉降特性试验研究[J]. 长江科学院院报. 2020, 37(1): 13-17 https://doi.org/10.11988/ckyyb.20180972
WANG Xi, ZHU Yong-hui, CHAI Zhao-hui, LI Ling-yun. Experimental Research on Flocculation-Settling Property of Silt in Rivers and Lakes[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(1): 13-17 https://doi.org/10.11988/ckyyb.20180972
中图分类号: TV142.1   

参考文献

[1] ZHANG J F, ZHANG Q H, MAA J P Y, et al. Lattice Boltzmann Simulation of Turbulence-induced Flocculation of Cohesive Sediment[J]. Ocean Dynamics, 2013, 63(9/10): 1123-1135.
[2] WINTERWERP J C. A Simple Model for Turbulence Induced Flocculation of Cohesive Sediment [J]. Journal of Hydraulic Research, 1998, 36(3): 309-326.
[3] 王党伟, 吉祖稳, 邓安军, 等. 絮凝对三峡水库泥沙沉降的影响[J]. 水利学报, 2016, 47(11): 1389-1396.
[4] GUO L C, HE Q. Freshwater Flocculation of Suspended Sediments in the Yangtze River, China[J]. Ocean Dynamics, 2011, 61(2/3): 371-386.
[5] FANG H W, HUANG L, WANG J Y, et al. Environmental Assessment of Heavy Metal Transport and Transformation in the Hangzhou Bay, China[J]. Journal of Hazardous Materials, 2016, 302: 447-457.
[6] FU J J, CAI W M. Application of a Well-designed Cationic Polyelectrolyte for Activated Sludge Dewatering[J]. Journal of Chemical Engineering of Japan, 2007, 40(12): 1113-1120.
[7] 高健磊,闫怡新,吴建平,等.城市污水处理厂污泥脱水性能研究[J].环境科学与技术, 2008,31(2):108-111.
[8] 朱 伟,闵凡路,吕一彦,等. “泥科学与应用技术” 的提出及研究进展[J]. 岩土力学,2013, 34(11): 3041-3054.
[9] KIM A S, STOLZENBACH K D. Aggregate Formation and Collision Efficiency in Differential Settling[J]. Journal of Colloid and Interface Science, 2004, 271(1): 110-119.
[10]SON M,HSU T J. Flocculation Model of Cohesive Sediment Using Variable Fractal Dimension[J]. Environmental Fluid Mechanics, 2008, 8(1): 55-71.
[11]XU W Y,GAO B Y,YUE Q Y,et al. Effect of Shear Force and Solution pH on Flocs Breakage and Re-growth Formed by Nano-Al13 Polymer[J]. Water Research, 2010, 44(6): 1893-1899.
[12]MAGGI F, TANG F H M. Analysis of the Effect of Organic Matter Content on the Architecture and Sinking of Sediment Aggregates[J]. Marine Geology, 2015,363:102-111.
[13]ANNANE S, ST-AMAND L, STARR M, et al. Contribution of Transparent Exopolymeric Particles (TEP) to Estuarine Particulate Organic Carbon Pool[J]. Marine Ecology Progress Series, 2015, 529: 17-34.
[14]陈洪松, 邵明安. NaCl对细颗粒泥沙静水絮凝沉降动力学模式的影响[J]. 水利学报,2002(8):63-67.
[15]吴荣荣,李九发,刘启贞,等. 钱塘江河口细颗粒泥沙絮凝沉降特性研究[J]. 海洋湖沼通报,2007(3):29-34.
[16]汤德意, 翁浩轩, 史燕南. 水库疏浚底泥絮凝沉降室内试验研究[J]. 长江科学院院报, 2018, 35(4): 31-36.
[17]李 享,雷学文,孟庆山,等. 淤泥絮凝脱水的室内试验研究[J]. 人民长江,2013, 44(13): 67-70.
[18]王诗妮,蒋雪中,何 青. 长江口不同河段表层细颗粒泥沙絮凝特性[J]. 泥沙研究,2017, 42(2): 47-53.
[19]杨铁笙,熊祥忠,詹秀玲,等. 粘性细颗粒泥沙絮凝研究概述[J]. 水利水运工程学报,2003(2): 65-77.

基金

国家重点研发计划项目(2016YFC0402300);国家自然科学基金项目(51609012,51339001)

PDF(1903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/